Convergence Analysis for The Numerical Boundary Corrector for Elliptic Equations with Rapidly Oscillating Coefficients
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[3] T. Hou,et al. Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .
[4] G. Stampacchia,et al. Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..
[5] P. Donato,et al. An introduction to homogenization , 2000 .
[6] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[7] L. Wahlbin,et al. Local behavior in finite element methods , 1991 .
[8] Giancarlo Sangalli,et al. Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..
[9] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[10] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[11] Todd Arbogast,et al. Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[12] Grégoire Allaire,et al. Boundary layer tails in periodic homogenization , 1999 .
[13] E Weinan,et al. The heterogeneous multi-scale method for homogenization problems , 2005 .
[14] F. Brezzi. Interacting with the subgrid world , 2005 .
[15] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[16] Ivo Babuška,et al. Solution of Interface Problems by Homogenization. I , 1976 .
[17] Assyr Abdulle,et al. Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..
[18] Yalchin Efendiev,et al. Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..
[19] M. Sarkis,et al. Numerical boundary corrector for elliptic equations with rapidly oscillating periodic coefficients , 2006 .
[20] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[21] Marco Avellaneda,et al. Homogenization of elliptic problems withLp boundary data , 1987 .
[22] Zhiming Chen,et al. A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..
[23] Yalchin Efendiev,et al. Multiscale finite element for problems with highly oscillatory coefficients , 2002, Numerische Mathematik.
[24] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[25] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[26] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[27] M. Vogelius,et al. Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .
[28] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[29] P. Peisker,et al. On the numerical solution of the first biharmonic equation , 1988 .
[30] V. Thomée,et al. The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .
[31] O. A. Ladyzhenskai︠a︡,et al. Équations aux dérivées partielles de type elliptique , 1968 .
[32] C. Schwab,et al. Generalized FEM for Homogenization Problems , 2002 .
[33] Thomas Y. Hou,et al. Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..
[34] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[35] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[36] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[37] N. Meyers. An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .
[38] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[39] S. Moskow,et al. First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[40] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[41] M. Sarkis,et al. A Three-Scale Finite Element Method for Elliptic Equations with Rapidly Oscillating Periodic Coefficients , 2007 .
[42] Mary F. Wheeler,et al. A Galerkin Procedure for Estimating the Flux for Two-Point Boundary Value Problems , 1974 .
[43] Jacques-Louis Lions,et al. Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .
[44] F. Brezzi,et al. A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .
[45] L. Greengard,et al. On the numerical solution of the biharmonic equation in the plane , 1992 .
[46] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[47] Michael Vogelius,et al. First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..