Convergence Analysis for The Numerical Boundary Corrector for Elliptic Equations with Rapidly Oscillating Coefficients

We develop the convergence analysis of a numerical scheme for approximating the solution of the elliptic problem $L_{\epsilon}u_{\epsilon} =- \frac{\partial}{\partial x_{i}}a_{ij}(x/ \epsilon) \frac{\partial }{\partial x_{j}}u_{\epsilon}=f \mbox{in} \Omega, u_{\epsilon}=0 \mbox{on} \partial\Omega,$ where $a(y)=(a_{ij}(y))$ is a periodic symmetric positive definite matrix and $\Omega = (0,1)^2$. The major goal of the numerical scheme is to capture the $\epsilon$-scale of the oscillations of the solution $u_\epsilon$ on a mesh size $h>\epsilon (\mbox{or} h>>\epsilon)$. The numerical scheme is based on asymptotic expansions, constructive boundary corrector, and finite element approximations. New a priori error estimates are established for the asymptotic expansions and for the constructive boundary correctors under weak assumptions on the regularity of the problem. These estimates permit to establish sharp finite element error estimates and to consider composite materials applications. Depending on the regularity of the problem, we establish for the numerical scheme a priori error estimates of $O(h^2 + \epsilon^{3/2}+ \epsilon h )$ on the $L^2$-norm, and $O(h + \epsilon^{1+ \hat{\delta}})$ for the broken $H^1$-norm where $\hat{\delta} \in (-\frac{1}{4}, 0]$.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[3]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[4]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[5]  P. Donato,et al.  An introduction to homogenization , 2000 .

[6]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[7]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[8]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[9]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[10]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[11]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[12]  Grégoire Allaire,et al.  Boundary layer tails in periodic homogenization , 1999 .

[13]  E Weinan,et al.  The heterogeneous multi-scale method for homogenization problems , 2005 .

[14]  F. Brezzi Interacting with the subgrid world , 2005 .

[15]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[16]  Ivo Babuška,et al.  Solution of Interface Problems by Homogenization. I , 1976 .

[17]  Assyr Abdulle,et al.  Heterogeneous Multiscale FEM for Diffusion Problems on Rough Surfaces , 2005, Multiscale Model. Simul..

[18]  Yalchin Efendiev,et al.  Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..

[19]  M. Sarkis,et al.  Numerical boundary corrector for elliptic equations with rapidly oscillating periodic coefficients , 2006 .

[20]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[21]  Marco Avellaneda,et al.  Homogenization of elliptic problems withLp boundary data , 1987 .

[22]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[23]  Yalchin Efendiev,et al.  Multiscale finite element for problems with highly oscillatory coefficients , 2002, Numerische Mathematik.

[24]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[25]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[26]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[27]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[29]  P. Peisker,et al.  On the numerical solution of the first biharmonic equation , 1988 .

[30]  V. Thomée,et al.  The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .

[31]  O. A. Ladyzhenskai︠a︡,et al.  Équations aux dérivées partielles de type elliptique , 1968 .

[32]  C. Schwab,et al.  Generalized FEM for Homogenization Problems , 2002 .

[33]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[34]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[35]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[36]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[37]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[38]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[39]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[41]  M. Sarkis,et al.  A Three-Scale Finite Element Method for Elliptic Equations with Rapidly Oscillating Periodic Coefficients , 2007 .

[42]  Mary F. Wheeler,et al.  A Galerkin Procedure for Estimating the Flux for Two-Point Boundary Value Problems , 1974 .

[43]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[44]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[45]  L. Greengard,et al.  On the numerical solution of the biharmonic equation in the plane , 1992 .

[46]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[47]  Michael Vogelius,et al.  First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..