Finite element wavelets with improved quantitative properties

In [W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999) 319-352 (electronic)], finite element wavelets were constructed on polygonal domains or Lipschitz manifolds that are piecewise parametrized by mappings with constant Jacobian determinants. The wavelets could be arranged to have any desired order of cancellation properties, and they generated stable bases for the Sobolev spaces H^s for |s|<32 (or |s|@?1 on manifolds). Unfortunately, it appears that the quantitative properties of these wavelets are rather disappointing. In this paper, we modify the construction from the above-mentioned work to obtain finite element wavelets which are much better conditioned.

[1]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[2]  Rob P. Stevenson,et al.  Wavelets with patchwise cancellation properties , 2006, Math. Comput..

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[5]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[6]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[7]  Rob P. Stevenson,et al.  Composite Wavelet Bases with Extended Stability and Cancellation Properties , 2007, SIAM J. Numer. Anal..

[8]  Michael S. Floater,et al.  Linear Independence and Stability of Piecewise Linear Prewavelets on Arbitrary Triangulations , 2000, SIAM J. Numer. Anal..

[9]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[10]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[11]  Rob Stevenson Piecewise linear (pre-)wavelets on non-uniform meshes , 1998 .

[12]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[13]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[14]  Angela Kunoth,et al.  Wavelets on manifolds: An optimized construction , 2006, Math. Comput..

[15]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[16]  Rob Stevenson,et al.  Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .

[17]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[18]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[19]  Hoang-Ngan Nguyen,et al.  Finite element wavelets for solving partial differential equations , 2005 .

[20]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[21]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[22]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[23]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[24]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[25]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[26]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[27]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[28]  Rob Stevenson,et al.  On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..