Effect of surface abrasion on pitting corrosion of Al-Li alloy

Abstract The effects of surface abrasion on microstructure and pitting corrosion of 2297 Al-Li alloy were investigated. Statistical analysis reveals that surface abrasion alters surface roughness and induces partial dissolution of intermetallic particles. A smoother surface finish reduces the population density and the average size of AlCuMnFe particles, due to enhanced dissolution of AlCuMnFe particles. All abraded samples undergo pitting corrosion, and surface layer dissolution (except pitting) is not observed. Smoother surface has lower pitting susceptibility and better corrosion resistance than the rougher surface. The intermetallic particles significantly affect pitting corrosion of 2297 Al-Li alloy, while surface roughness has small influence.

[1]  H. Wu,et al.  Localised corrosion in AA 2099-T83 aluminium-lithium alloy: the role of grain orientation , 2016 .

[2]  H. Lee,et al.  Effect of precipitates on mechanical properties of AA2195 , 2016 .

[3]  N. Birbilis,et al.  Metastable pitting characteristics of aluminium alloys measured using current transients during potentiostatic polarisation , 2012 .

[4]  G. Frankel,et al.  A Study of Corrosion and Pitting Initiation of AA2024-T3 Using Atomic Force Microscopy , 2002 .

[5]  Jianhua Liu,et al.  Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys , 2016 .

[6]  G. Odemer,et al.  Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy , 2016 .

[7]  Sang Mok Lee,et al.  Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel , 2012 .

[8]  N. Birbilis,et al.  The effect of chromate on the pitting susceptibility of AA7075-T651 studied using potentiostatic transients , 2014 .

[9]  Petrus Christiaan Pistorius,et al.  Metastable pitting corrosion of stainless steel and the transition to stability , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  M. Weyland,et al.  Role of nanostructure in pitting of Al–Cu–Mg alloys , 2010 .

[11]  B. Peng,et al.  Corrosion behaviour and mechanism of new aerospace Al–Zn–Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1−x nanoparticles , 2015 .

[12]  X. Yue,et al.  Effect of aging treatment on the exfoliation corrosion and stress corrosion cracking behaviors of 2195 Al–Li alloy , 2015 .

[13]  Y. F. Cheng,et al.  Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol–water solution , 2008 .

[14]  P. Pistorius,et al.  ASPECTS OF THE EFFECTS OF ELECTROLYTE COMPOSITION ON THE OCCURRENCE OF METASTABLE PITTING ON STAINLESS STEEL , 1994 .

[15]  G. Thompson,et al.  Continuous and discontinuous localized corrosion of a 2xxx aluminium–copper–lithium alloy in sodium chloride solution , 2016 .

[16]  L. Speckert,et al.  Combined anodic/cathodic transient currents within nucleating pits on Al–Fe alloy surfaces , 2011 .

[17]  Junjie Wang,et al.  The corrosion behaviour of machined AA7150-T651 aluminium alloy , 2017 .

[18]  P. Pistorius,et al.  Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride Solutions , 1995 .

[19]  Liang Tongxiang,et al.  The passive film characteristics of several plastic deformation 2099 Al–Li alloy , 2016 .

[20]  R. Valiev,et al.  Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al-Zn and Al-Mg alloys , 2004 .

[21]  A. Hughes,et al.  Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles , 2011 .

[22]  G. Fan,et al.  Microstructure evolution in abrasion-induced surface layer on an Al–Zn–Mg–Cu alloy , 2014 .

[23]  C. Marino,et al.  SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication , 2014 .

[24]  A. Trueman Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements , 2005 .

[25]  D. Seidman,et al.  Effect of Surface Roughness on Breakdown Behavior of Al-Zn-Mg-Cu Alloy , 2014 .

[26]  K. Nisancioglu,et al.  Influence of heat treatment and surface conditioning on filiform corrosion of aluminium alloys AA3005 and AA5754 , 2001 .

[27]  Jing-Chie Lin,et al.  Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution , 2006 .

[28]  A. Davenport,et al.  Electrochemical Behavior of the Active Surface Layer on Rolled Aluminum Alloy Sheet , 2004 .

[29]  Petrus Christiaan Pistorius,et al.  Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate , 1992 .

[30]  G. Burstein,et al.  Erosion–corrosion of stainless steel under impingement by a fluid jet , 2007 .

[31]  Ricardo M. Souto,et al.  Origins of pitting corrosion , 2004 .

[32]  M. Weyland,et al.  The effect of precipitate size on the yield strength-pitting corrosion correlation in Al–Cu–Mg alloys , 2010 .

[33]  G. Frankel,et al.  On the first breakdown in AA7075-T6 , 2007 .

[34]  N. Birbilis,et al.  Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys , 2010 .

[35]  J. Castle,et al.  Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution , 2010 .

[36]  K. Nisancioglu,et al.  Characterization of Electrochemically Active Surface Layers on Rolled Commercial Alloys AA8006 and AA5182 Aluminum , 2001 .

[37]  G. Frankel,et al.  Effect of Altered Surface Layer on Localized Corrosion of Aluminum Alloy 2024 , 2017 .

[38]  Y. Lin,et al.  Microstructures and properties of 2099 Al-Li alloy , 2013 .

[39]  A. Deschamps,et al.  Influence of Mg and Li content on the microstructure evolution of Al Cu Li alloys during long-term ageing , 2017 .

[40]  G. T. Burstein,et al.  Nucleation of corrosion pits on stainless steel , 1992 .

[41]  E. Han,et al.  Detection and analysis of anodic current transients associated with nanoscale β-phase precipitates on an Al–Mg microelectrode , 2015 .

[42]  J. Teixeira,et al.  Quantifying the strain-induced dissolution of precipitates in Al alloy microstructures using nuclear magnetic resonance , 2009 .

[43]  Xin-Mingm Zhang,et al.  The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 , 2014 .

[44]  G. Thompson,et al.  Localized corrosion in AA2099-T83 aluminum–lithium alloy: The role of intermetallic particles , 2015 .

[45]  G. Thompson,et al.  Near-Surface Deformed Layers on Rolled Aluminum Alloys , 2011 .

[46]  C. Ryan,et al.  Stable pit formation on AA2024-T3 in a NaCl environment , 2010 .

[47]  Jinping Xiong,et al.  The aspect ratio of surface grooves and metastable pitting of stainless steel , 2002 .

[48]  Jianhua Liu,et al.  Pitting corrosion of naturally aged AA 7075 aluminum alloys with bimodal grain size , 2016 .

[49]  Ming Chen,et al.  Surface Integrity Analysis on High Speed End Milling of 7075 Aluminum Alloy , 2012 .

[50]  Y. F. Cheng,et al.  Investigation of erosion–corrosion of 3003 aluminum alloy in ethylene glycol–water solution by impingement jet system , 2009 .

[51]  D. Larouche,et al.  Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density , 2016 .

[52]  Yujin Hu,et al.  Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water , 2017 .

[53]  P. Natishan,et al.  Impedance studies of the passive film on aluminium , 2005 .

[54]  Zhiyi Liu,et al.  Strain-induced dissolution of Cu–Mg co-clusters and dynamic recrystallization near a fatigue crack tip of an underaged Al–Cu–Mg alloy during cyclic loading at ambient temperature , 2011 .