Spectral shape classification: A deep learning approach

We introduce low-level shape descriptors using area-weighted spectral graph wavelets.We design mid-level features using the bag-of-features model.We use deep belief networks to learn high-level features for 3D shape classification.Experimental results on 3D shape benchmarks demonstrate the feasibility of our approach. In this paper, we propose a deep learning approach to 3D shape classification using spectral graph wavelets and the bag-of-features paradigm. In order to capture both the local and global geometry of a 3D shape, we present a three-step feature description strategy. Local descriptors are first extracted via the spectral graph wavelet transform having the Mexican hat wavelet as a generating kernel. Then, mid-level features are obtained by embedding local descriptors into the visual vocabulary space using the soft-assignment coding step of the bag-of-features model. A global descriptor is subsequently constructed by aggregating mid-level features weighted by a geodesic exponential kernel, resulting in a matrix representation that describes the frequency of appearance of nearby codewords in the vocabulary. Experimental results on two standard 3D shape benchmarks demonstrate the much better performance of the proposed approach in comparison with state-of-the-art methods.

[1]  A. Ben Hamza,et al.  Information-theoretic hashing of 3D objects using spectral graph theory , 2009, Expert Syst. Appl..

[2]  A. Ben Hamza,et al.  Intrinsic spatial pyramid matching for deformable 3D shape retrieval , 2013, International Journal of Multimedia Information Retrieval.

[3]  M. A. Khaboua,et al.  Shape recognition using eigenvalues of the Dirichlet Laplacian , 2006 .

[4]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[6]  SchmidhuberJürgen Deep learning in neural networks , 2015 .

[7]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[8]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[9]  A. Ben Hamza,et al.  Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey , 2013, Multimedia Systems.

[10]  Rongrong Ji,et al.  Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition , 2014, IEEE Transactions on Multimedia.

[11]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[12]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[13]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[14]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[15]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[16]  Paul Suetens,et al.  A comparison of methods for non-rigid 3D shape retrieval , 2013, Pattern Recognit..

[17]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[18]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[19]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[20]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[21]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[22]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[23]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[24]  Anand A Joshi,et al.  Global point signature for shape analysis of carpal bones , 2014, Physics in medicine and biology.

[25]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[26]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[27]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[28]  Bo Li,et al.  Shape Retrieval of Non-Rigid 3D Human Models , 2014, 3DOR@Eurographics.

[29]  Zeyun Yu,et al.  A compact shape descriptor for triangular surface meshes , 2014, Comput. Aided Des..

[30]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[31]  Paul Suetens,et al.  SHREC'10 Track: Non-rigid 3D Shape Retrieval , 2010, 3DOR@Eurographics.

[32]  A. Ben Hamza,et al.  Geometric Methods in Signal and Image Analysis: References , 2015 .

[33]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[34]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .