First-principles calculations of zero-field splitting parameters.

In this work, an implementation of an approach to calculate the zero-field splitting (ZFS) constants in the framework of ab initio methods such as complete active space self-consistent field, multireference configuration interaction, or spectroscopy oriented configuration interaction is reported. The spin-orbit coupling (SOC) contribution to ZFSs is computed using an accurate multicenter mean-field approximation for the Breit-Pauli Hamiltonian. The SOC parts of ZFS constants are obtained directly after diagonalization of the SOC operator in the basis of a preselected number of roots of the spin-free Hamiltonian. This corresponds to an infinite order treatment of the SOC in terms of perturbation theory. The spin-spin (SS) part is presently estimated in a mean-field fashion and appears to yield results close to the more complete treatments available in the literature. Test calculations for the first- and second-row atoms as well as first-row transition metal atoms and a set of diatomic molecules show accurate results for the SOC part of ZFSs. SS contributions have been found to be relatively small but not negligible (exceeding 1 cm(-1) for oxygen molecule). At least for the systems studied in this work, it is demonstrated that the presented method provides much more accurate estimations for the SOC part of ZFS constants than the emerging density functional theory approaches.

[1]  Y. Kitagawa,et al.  A theoretical study of zero-field splitting of organic biradicals , 2005 .

[2]  S. Yamanaka,et al.  Density functional study of zero-field splitting , 2005 .

[3]  C. Marian,et al.  Efficient generation of matrix elements for one-electron spin–orbit operators , 2005 .

[4]  Frank Neese,et al.  Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters. , 2005, Journal of the American Chemical Society.

[5]  M Elstner,et al.  Calculating absorption shifts for retinal proteins: computational challenges. , 2005, The journal of physical chemistry. B.

[6]  F. Neese,et al.  Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+. , 2005, The Journal of chemical physics.

[7]  Frank Neese,et al.  Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. , 2005, The Journal of chemical physics.

[8]  F. Neese,et al.  Comparison of density functionals for energy and structural differences between the high- [5T2g: (t2g)4(eg)2] and low- [1A1g: (t2g)6(eg)0] spin states of the hexaquoferrous cation [Fe(H2O)6]2+. , 2004, The Journal of chemical physics.

[9]  M. Kaupp,et al.  Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory. , 2004, The Journal of chemical physics.

[10]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[11]  H. Ågren,et al.  Fine and hyperfine structure in three low-lying 3Σ+ states of molecular hydrogen , 2003 .

[12]  H. Ågren,et al.  CASSCF calculations of triplet state properties: applications to benzene derivatives , 2003 .

[13]  Michael W. Schmidt,et al.  Spin-orbit coupling in molecules: Chemistry beyond the adiabatic approximation , 2003 .

[14]  V. Bratus’,et al.  The carbon 100 split interstitial in SiC , 2002 .

[15]  H. Ågren,et al.  Ab initio calculations of zero-field splitting parameters , 2002 .

[16]  Martin Kleinschmidt,et al.  Spin‐orbit coupling of DFT/MRCI wavefunctions: Method, test calculations, and application to thiophene , 2002, J. Comput. Chem..

[17]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[18]  J. Kortus,et al.  Magnetic ordering, electronic structure, and magnetic anisotropy energy in the high-spin Mn 10 single molecule magnet , 2002, cond-mat/0204479.

[19]  C. Marian Spin‐Orbit Coupling in Molecules , 2001 .

[20]  D. Fedorov,et al.  Spin-orbit multireference multistate perturbation theory , 2001 .

[21]  B. Schimmelpfennig,et al.  Spin-orbit coupling within a two-component density functional theory approach: Theory, implementation and first applications , 2001 .

[22]  B. Schimmelpfennig,et al.  Density Functional Calculations of Electronic g-Tensors Using Spin−Orbit Pseudopotentials and Mean-Field All-Electron Spin−Orbit Operators , 2000 .

[23]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[24]  M. Gordon,et al.  A study of the relative importance of one and two-electron contributions to spin–orbit coupling , 2000 .

[25]  M. Sironi,et al.  Ab initio calculation of the zero-field splitting parameter D of benzene and naphthalene , 2000 .

[26]  Mark R. Pederson,et al.  Magnetic anisotropy barrier for spin tunneling in Mn 12 O 12 molecules , 1999 .

[27]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[28]  H. Ågren,et al.  Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin–orbit Hamiltonian , 1999 .

[29]  Russell M. Pitzer,et al.  Spin-Orbit Configuration Interaction Using the Graphical Unitary Group Approach and Relativistic Core Potential and Spin-Orbit Operators , 1999 .

[30]  F. Neese,et al.  Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes. , 1998, Inorganic chemistry.

[31]  Michael W. Schmidt,et al.  Effective Nuclear Charges for the First- through Third-Row Transition Metal Elements in Spin−Orbit Calculations , 1998 .

[32]  B. A. Hess,et al.  Spin–orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? , 1998 .

[33]  Michael Hanrath,et al.  New algorithms for an individually selecting MR-CI program , 1997 .

[34]  J. Olsen,et al.  A determinantal approach to spin-orbit configuration interaction , 1997 .

[35]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[36]  M. Zerner,et al.  Spin−Orbit Coupling in Organic Molecules: A Semiempirical Configuration Interaction Approach toward Triplet State Reactivity , 1996 .

[37]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[38]  P. Surján,et al.  Zero-field-splitting in the lowest triplet state of C60 , 1996 .

[39]  B. A. Hess,et al.  AB INITIO CALCULATION OF SPIN–ORBIT EFFECTS IN MOLECULES INCLUDING ELECTRON CORRELATION , 1995 .

[40]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[41]  Michael W. Schmidt,et al.  Main Group Effective Nuclear Charges for Spin-Orbit Calculations , 1995 .

[42]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[43]  J. Malrieu,et al.  An iterative difference-dedicated configuration interaction. Proposal and test studies , 1995 .

[44]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[45]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[46]  Jean-Paul Malrieu,et al.  Specific CI calculation of energy differences: Transition energies and bond energies , 1993 .

[47]  M. Odelius,et al.  Normal coordinate analysis of the zero-field splitting in octahedral NiF4- 6 , 1993 .

[48]  Mark S. Gordon,et al.  MCSCF/6-31 G(d,p) Calculations of One-Electron Spin-Orbit Coupling Constants In Diatomic Molecules , 1992 .

[49]  J. Olsen,et al.  Spin–orbit coupling constants in a multiconfiguration linear response approach , 1992 .

[50]  D. Yarkony On the use of the Breit–Pauli approximation for evaluating line strengths for spin‐forbidden transitions. II. The symbolic matrix element method , 1986 .

[51]  E. Broclawik,et al.  New concepts in bonded functions theory. I. alternative way of matrix elements evaluation , 1985 .

[52]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[53]  B. A. Hess,et al.  AB initio calculation of the zero-field splittings of the X3Σg− and B3Πg,i states of the S2 molecule , 1982 .

[54]  P. Ruttink Generation of generalized branching diagram spin functions by Schmidt orthogonalization of spin-paired functions , 1981 .

[55]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[56]  G. Segal,et al.  Efficient methods for configuration interaction calculations , 1978 .

[57]  E. Davidson,et al.  Ab initio study of the zero‐field splitting parameters of 3B1u benzene , 1975 .

[58]  T. D. Bouman,et al.  Group-theoretical analysis of carbonium ion rearrangements: The barbaralyl cation , 1975 .

[59]  A. Stone,et al.  The gas-phase electron paramagnetic resonance spectrum of vibrationally excited SO radicals , 1974 .

[60]  B. Thrush,et al.  The gas-phase E.P.R. spectrum of diatomic sulphur molecules , 1974 .

[61]  S. Langhoff Ab initio evaluation of the fine structure of the oxygen molecule , 1974 .

[62]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[63]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[64]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[65]  R. H. Pritchard,et al.  Comment on the Spin‐Orbit Contribution to the Zero‐Field Splitting of the Oxygen Molecule , 1972 .

[66]  H. F. Hameka,et al.  Spin‐Orbit Contribution to the Zero‐Field Splitting of the Oxygen Molecule , 1971 .

[67]  W. Richards,et al.  Molecular Spin–Orbit Coupling Constants. The Role of Core Polarization , 1970 .

[68]  M. Gouterman,et al.  Theory for Zero‐Field Splittings in Aromatic Hydrocarbons. III , 1963 .

[69]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics II. Separation of space and spin variables; spin coupling problems , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  H. F. Hameka Theory of the Electron Spin Resonance of Benzene in the Triplet State , 1959 .

[71]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .

[72]  M. Tinkham Theory of the fine structure of the molecular oxygen ground state with an experimental study of its microwave paramagnetic spectrum , 1955 .

[73]  G. Breit,et al.  Dirac's Equation and the Spin-Spin Interactions of Two Electrons , 1932 .

[74]  G. Breit The Effect of Retardation on the Interaction of Two Electrons , 1929 .

[75]  F. Neese,et al.  Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study. , 2004, Chemistry.

[76]  H. Ågren,et al.  Ab initio calculations of zero-field splitting parameters in linear polyacenes , 2003 .

[77]  M. Ratner Molecular electronic-structure theory , 2000 .

[78]  G. Diercksen,et al.  Symmetric group approach to relativistic CI. I. General formalism , 1997 .

[79]  G. Diercksen,et al.  SYMMETRIC GROUP APPROACH TO RELATIVISTIC CI. II. REDUCTION OF MATRICES IN THE SPIN SPACE , 1997 .

[80]  G. Diercksen,et al.  SYMMETRIC GROUP APPROACH TO RELATIVISTIC CI. III. MATRIX ELEMENTS FOR SPIN-DEPENDENT OPERATORS , 1997 .

[81]  N. Rösch,et al.  An INDO/S-CI treatment including spin-orbit interaction based on Rumer spin functions. Application to the hydrated cerium ion , 1991 .

[82]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[83]  Ruben Pauncz,et al.  Spin Eigenfunctions: Construction and Use , 1979 .

[84]  E. M. Loebl,et al.  Theoretical foundations of electron spin resonance , 1978 .

[85]  R. Mcweeny Methods Of Molecular Quantum Mechanics , 1969 .

[86]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .