Dendritic Iron(II) Porphyrins as Models for Hemoglobin and Myoglobin: Specific Stabilization of O2 Complexes in Dendrimers with H-Bond-Donor Centers

Two types of dendritically functionalized iron(II) porphyrins were prepared (Scheme) and investigated in the presence of 1,2-dimethylimidazole (1,2-DiMeIm) as the axial ligand as model systems for T(tense)-state hemoglobin (Hb) and myoglobin (Mb). Equilibrium O2- and CO-binding studies were performed in toluene and aqueous phosphate buffer (pH 7). UV/VIS Titrations (Fig. 4) revealed that the two dendritic receptors 1⋅FeII-1,2-DiMeIm and 2⋅FeII-1,2-DiMeIm (Fig. 2) with secondary amide moieties in the dendritic branching undergo reversible complexation (Fig. 5) with O2 and CO in dry toluene. Whereas the CO affinity is similar to that measured for the natural receptors, the O2 affinity is greatly enhanced and exceeds that of T-state Hb by a factor of ca. 1500 (Table). The oxygenated complexes possess half-lives of several h (Fig. 6). This remarkable stability originates from both dendritic encapsulation of the iron(II) porphyrin and formation of a H-bond between bound O2 and a dendritic amide NH moiety (Fig. 11). Whereas reversible CO binding was also observed in aqueous solution (Fig. 10), the oxygenated iron(II) complexes are destabilized by the presence of H2O with respect to oxidative decay (Fig. 9), possibly as a result of the weakening of the O2⋅⋅⋅H−N H-bond by the competitive solvent. The comparison between the two dendrimers with amide branchings and ester derivative 3⋅FeII-1,2-DiMeIm (Fig. 2), which lacks H-bond donor centers in the periphery of the porphyrin, further supports the role of H-bonding in stabilizing the O2 complex against irreversible oxidation. All three derivatives bind CO reversibly and with similar affinity (Fig. 8) in dry toluene, but the oxygenated complex of 3⋅FeII-1,2-DiMeIm undergoes much more rapid oxidative decomposition (Fig. 7).

[1]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[2]  Mikiya Matsuura,et al.  Wasserstoffbrücken‐gebundenes Sauerstoffaddukt eines Eisenporphyrins mit Alkanthiolatligand: ein fortgeschrittenes Cytochrom‐P450‐Modell , 2000 .

[3]  F. Diederich,et al.  Synthesis of dendritic iron(II) porphyrins with a tethered axial imidazole ligand designed as new model compounds for globins , 2000 .

[4]  D. Goldberg Oxygen-Avid Hemoglobin of Ascaris. , 1999, Chemical reviews.

[5]  Sergei A. Vinogradov,et al.  DENDRITIC POLYGLUTAMIC PORPHYRINS : PROBING PORPHYRIN PROTECTION BY OXYGEN-DEPENDENT QUENCHING OF PHOSPHORESCENCE , 1999 .

[6]  James P. Collman,et al.  Synthetic Models for Hemoglobin and Myoglobin , 1999 .

[7]  K. Shikama The Molecular Mechanism of Autoxidation for Myoglobin and Hemoglobin: A Venerable Puzzle. , 1998, Chemical reviews.

[8]  W. Dehaen,et al.  Solvent Dependence of the Hydrodynamical Volume of Dendrimers with a Rubicene Core , 1998 .

[9]  F. Diederich,et al.  Dendritic hydrogen bonding receptors: enantiomerically pure dendroclefts for the selective recognition of monosaccharides , 1998 .

[10]  F. Diederich,et al.  Dendrimers with Porphyrin Cores: Synthetic Models for Globular Heme Proteins , 1997 .

[11]  J. S. Olson,et al.  Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand , 1997, JBIC Journal of Biological Inorganic Chemistry.

[12]  J. I. Brauman,et al.  Aza-Crown-Capped Porphyrin Models of Myoglobin: Studies of the Steric Interactions of Gas Binding , 1997 .

[13]  K. Shikama,et al.  Biphasic nature in the autoxidation reaction of human oxyhemoglobin. , 1997, Biochimica et biophysica acta.

[14]  F. Diederich,et al.  Dioxygen and carbon monoxide binding in dendritic iron(ii)porphyrins , 1997 .

[15]  F. Diederich,et al.  Water‐Soluble Dendritic Iron Porphyrins: Synthetic Models of Globular Heme Proteins , 1996 .

[16]  T. Aida,et al.  A dendritic iron porphyrin as a novel haemoprotein mimic: effects of the dendrimer cage on dioxygen-binding activity , 1996 .

[17]  Peter J. Dandliker,et al.  Wasserlösliche dendritische Eisenporphyrine: synthetische Modelle für globuläre Häm‐Proteine , 1995 .

[18]  Spiro Tg CO binding and bending energetics. , 1995 .

[19]  S. Ito,et al.  Mitsunobu acylation of sterically congested secondary alcohols by N,N,N′,N′-tetramethylazodicarboxamide-tributylphosphine reagents , 1995 .

[20]  F. Diederich,et al.  Dendritic Porphyrins: Modulating Redox Potentials of Electroactive Chromophores with Pendant Multifunctionality , 1994 .

[21]  François Diederich,et al.  Dendritische Porphyrine: Modulation des Redoxpotentials elektroaktiver Chromophore durch periphere Multifunktionalität , 1994 .

[22]  J. I. Brauman,et al.  Dioxygen Binding in Iron and Cobalt Picnic Basket Porphyrins , 1994 .

[23]  Stephen G. Sligar,et al.  Mechanisms of Ligand Recognition in Myoglobin , 1994 .

[24]  Christopher A. Reed,et al.  Synthetic Heme Dioxygen Complexes , 1994 .

[25]  Michael L. Quillin,et al.  Structural determinants of the stretching frequency of CO bound to myoglobin. , 1994, Biochemistry.

[26]  C. Reed,et al.  Hydrogen-bonded oxyhemoglobin models with substituted picket-fence porphyrins: the model compound equivalent of site-directed mutagenesis , 1992 .

[27]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[28]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[29]  C. Hawker,et al.  A new convergent approach to monodisperse dendritic macromolecules , 1990 .

[30]  S. Sligar,et al.  Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. , 1989, The Journal of biological chemistry.

[31]  Chi K. Chang,et al.  Fine Tuning of Heme Reactivity: Hydrogen-Bonding and Dipole Interactions Affecting Ligand Binding to Hemoproteins , 1988 .

[32]  K. Nagai,et al.  Distal residues in the oxygen binding site of haemoglobin studied by protein engineering , 1987, Nature.

[33]  E. Kyuno,et al.  Effects of polarity on dioxygen binding to cobalt(II) porphyrins , 1986 .

[34]  T. Traylor,et al.  Structural differentiation of carbon monoxide and oxygen binding to iron porphyrins: polar pocket effects , 1985 .

[35]  G. Jameson,et al.  Role of weak hydrogen bonding in the coordination of dioxygen to hemoproteins and their models , 1985 .

[36]  T. Traylor,et al.  Anthracene heme cyclophanes. Steric effects in carbon monoxide, molecular oxygen, and RNC binding , 1985 .

[37]  J. Mispelter,et al.  Linear free-energy relationships in binding of oxygen and carbon monoxide with heme model compounds and heme proteins. , 1984, European journal of biochemistry.

[38]  J. Ibers,et al.  1,3-Adamantane−3,13-porphyrin−6,6-cyclophane: crystal structure of the free base and steric effects on ligation of the iron(II) complex , 1984 .

[39]  M. M. Fox,et al.  A BIS-POCKET PORPHYRIN , 1983 .

[40]  J. I. Brauman,et al.  DIOXYGEN AND CARBONYL BINDING TO IRON(II) PORPHYRINS: A COMPARISON OF THE “PICKET FENCE” AND “POCKET” PORPHYRINS , 1983 .

[41]  J. I. Brauman,et al.  Synthesis and characterization of the "pocket" porphyrins , 1983 .

[42]  B. Shaanan The iron–oxygen bond in human oxyhaemoglobin , 1982, Nature.

[43]  M. Momenteau,et al.  Kinetic evidence for dioxygen stabilization in oxygenated iron(II)-porphyrins by distal polar interactions , 1982 .

[44]  Benno P. Schoenborn,et al.  Neutron diffraction reveals oxygen–histidine hydrogen bond in oxymyoglobin , 1981, Nature.

[45]  Teddy G. Traylor,et al.  Synthetic model compounds for hemoproteins , 1981 .

[46]  K. Shikama,et al.  Autoxidation of native oxymyoglobin. Thermodynamic analysis of the pH profile. , 1980, European journal of biochemistry.

[47]  F. Basolo,et al.  Axial ligation constants of iron(II) and cobalt(II) "capped" porphyrins , 1980 .

[48]  Fred Basolo,et al.  Synthetic oxygen carriers related to biological systems , 1979 .

[49]  M. Perutz,et al.  Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. , 1979, Annual review of biochemistry.

[50]  J. Cannon,et al.  Model compounds for R-state and T-state hemoglobins , 1978 .

[51]  J I Brauman,et al.  Nature of O2 and CO binding to metalloporphyrins and heme proteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Walker,et al.  Electronic effects in transition metal porphyrins. The reactions of imidazoles and pyridines with a series of para-substituted tetraphenylporphyrin complexes of chloroiron(III). , 1976, Journal of the American Chemical Society.

[53]  M. Perutz,et al.  Structure of horse carbonmonoxyhaemoglobin. , 1976, Journal of molecular biology.

[54]  W. Robinson,et al.  "Picket fence porphyrins." Synthetic models for oxygen binding hemoproteins. , 1975, Journal of the American Chemical Society.

[55]  T. Yonetani,et al.  Studies on cobalt myoglobins and hemoglobins. 3. Electron paramagnetic resonance studies of reversible oxygenation of cobalt myoglobins and hemoglobins. , 1974, The Journal of biological chemistry.

[56]  W. Robinson,et al.  Structure of an iron(II) dioxygen complex; a model for oxygen carrying hemeproteins. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Mansouri,et al.  Nonequivalence of chains in hemoglobin oxidation. , 1973, Biochemistry.

[58]  C. Reed,et al.  Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin. Model for oxymyoglobin , 1973 .

[59]  C. Reed,et al.  Syntheses of ferrous-porphyrin complexes. A hypothetical model for deoxymyoglobin. , 1973, Journal of the American Chemical Society.

[60]  J L Hoard,et al.  Stereochemistry of hemes and other metalloporphyrins. , 1971, Science.

[61]  Fernández Jf Frontiers of biology , 1971 .

[62]  Q. Gibson,et al.  Use of a fluorescent analogue of 2,3-diphosphoglycerate as a probe of human hemoglobin conformation during carbon monoxide binding. , 1971, Journal of Biological Chemistry.

[63]  Q. Gibson,et al.  Rates of reaction of Ascaris haemoglobins with ligands , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  L. Pauling,et al.  Nature of the Iron–Oxygen Bond in Oxyhæmoglobin , 1964, Nature.

[65]  N. J. Rose,et al.  Molecular Addition Compounds of Iodine. I. An Absolute Method for the Spectroscopic Determination of Equilibrium Constants , 1959 .

[66]  T. Sjostrand,et al.  Formation and elimination of CO in mammals. , 1954, Acta physiologica Scandinavica.