High power nd:glass laser for fusion applications.

Experiments on laser-induced thermonuclear fusion require high brightness lasers capable of producing subnanosecond pulses with total energy content of several kilojoules. Of existing laser media, Nd:glass appears to be the best choice for meeting these criteria. In this paper we discuss the problems of designing a high power Nd:glass laser system. A detailed description of an operating two-beam system producing subnanosecond pulses with a maximum energy of 350 J per beam is presented, along with an extensive description of beam diagnostic techniques. A four beam version of this system became operational on 3 April 1974 and is now producing energies in excess of a kilojoule in subnanosecond pulses.

[1]  A H Guenther,et al.  Damage in laser materials. , 1972, Applied optics.

[2]  J. Soures,et al.  Spatial distribution of inversion in face pumped nd:glass laser slabs. , 1973, Applied optics.

[3]  Anthony J. Demaria,et al.  Picosecond Laser Pulses , 1969, Other Conferences.

[4]  Hermann A. Haus,et al.  Large-Scale Self-Trapping of Optical Beams in the Paraxial Ray Approximation , 1968 .

[5]  J. Soures,et al.  Large‐aperture Nd‐glass laser amplifier for high‐peak‐power application , 1973 .

[6]  C. Giuliano,et al.  Laser-Induced Damage in Optical Materials , 1973 .

[7]  S. L. Shapiro,et al.  Study of the Nd: Glass laser radiation , 1970 .

[8]  D. Linde,et al.  Recovery time of saturable absorbers for 1.06 u , 1973 .

[9]  J. F. Holzrichter,et al.  A glass-disk-laser amplifier , 1973 .

[10]  A. Penzkofer,et al.  Nonlinear loss in Nd‐doped laser glass , 1972 .

[11]  A. Guenther,et al.  Laser induced damage in optical materials :: 1972 , 1972 .

[12]  V. Letokhov,et al.  Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber , 1972 .

[13]  P. Magnante Influence of the lifetime and degeneracy of the 4 I 11/2 level on Nd-glass amplifiers , 1972 .

[14]  Herwig Kogelnik,et al.  Imaging of optical modes — resonators with internal lenses , 1965 .

[15]  J. E. Swain,et al.  Preliminary measurements of x-ray and neutron emission from laser-produced plasmas. , 1972, Applied optics.

[16]  C. Bickart,et al.  Spatial and Temporal Variation of the Optical Path Length in Flash-Pumped Laser Rods* , 1966 .

[17]  G. Herziger,et al.  Fundamental mode radiation with solid-state lasers , 1972 .

[18]  J. Soures,et al.  Saturation of Stimulated Backscattered Radiation in Laser Plasmas , 1973 .

[19]  J. Gerardo,et al.  High-pressure xenon laser at 1730 Å , 1973 .

[20]  J. H. Marburger,et al.  Computer Studies in Self-Focusing , 1969 .

[21]  G. Dubé BACKGROUND ENERGY CONTENT OF MODE‐LOCKED LASER PULSES , 1971 .

[22]  M. V. R. K. Murty,et al.  The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source. , 1964 .

[23]  E. Snitzer Frequency control of a Nd(3+) glass laser. , 1966, Applied optics.

[24]  G. Schappert,et al.  Comparison of theory and experiment for nanosecond‐pulse amplification in high‐gain CO2 amplifier systems , 1973 .

[25]  E. Riedel,et al.  Measurements of Dynamic Optical Distortion in Nd‐Doped Glass Laser Rods , 1967 .

[26]  K. Hohla,et al.  Gigawatt photochemical iodine laser , 1973 .

[27]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.