Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point
暂无分享,去创建一个
Alejandro J. Rodríguez-Luis | Manuel Merino | Fernando Fernández-Sánchez | Antonio Algaba | A. Algaba | F. Fernández-Sánchez | A. Rodríguez-Luis | M. Merino
[1] Bernd Krauskopf,et al. Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation , 2006 .
[2] Alejandro J. Rodríguez-Luis,et al. The non-transverse Shil'nikov-Hopf bifurcation: uncoupling of homoclinic orbits and homoclinic tangencies , 1999 .
[3] Isolas, cusps and global bifurcations in an electronic oscillator , 1997 .
[4] Jeroen S. W. Lamb,et al. Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3 , 2005 .
[5] 综合社会科学. The London Mathematical Society , 2012, From Servant to Queen: A Journey through Victorian Mathematics.
[6] Bernd Krauskopf,et al. A planar model system for the saddle-node Hopf bifurcation with global reinjection , 2004 .
[7] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[8] Antonio Algaba,et al. Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy , 2003, Int. J. Bifurc. Chaos.
[9] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[10] E. Freire,et al. T-Points in a Z2-Symmetric Electronic Oscillator. (I) Analysis , 2002 .
[11] Mario A. Natiello,et al. Accumulations of T-points in a model for solitary pulses in an excitable reaction-diffusion medium , 2005 .
[12] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[13] Xiao-Biao Lin,et al. Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] Chai Wah Wu,et al. LORENZ EQUATION AND CHUA’S EQUATION , 1996 .
[15] Antonio Algaba,et al. Open-to-Closed Curves of saddle-Node bifurcations of Periodic orbits Near a Nontransversal T-Point in Chua's equation , 2006, Int. J. Bifurc. Chaos.
[16] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[17] Colin Sparrow,et al. T-points: A codimension two heteroclinic bifurcation , 1986 .
[18] R. Thom. Structural stability and morphogenesis , 1977, Pattern Recognition.
[19] Vladimir I. Arnold,et al. Singularity Theory I , 1998 .
[20] C. M. Place,et al. An Introduction to Dynamical Systems , 1990 .
[21] Edgar Knobloch,et al. Unfolding a Tangent Equilibrium-to-Periodic Heteroclinic Cycle , 2009, SIAM J. Appl. Dyn. Syst..
[22] Carlo R. Laing,et al. Successive homoclinic tangencies to a limit cycle , 1995 .
[23] Alejandro J. Rodríguez-Luis,et al. Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model , 2001, Int. J. Bifurc. Chaos.
[24] Alejandro J. Rodríguez-Luis,et al. Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation , 2003, Int. J. Bifurc. Chaos.
[25] M. Čadek. Singularities and groups in bifurcation theory, volume I , 1990 .
[26] Raymond Kapral,et al. Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .
[27] Alejandro J. Rodríguez-Luis,et al. Nontransversal curves of T-points: a source of closed curves of global bifurcations , 2002 .
[28] A. Nayfeh,et al. Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .
[29] V. V. Bykov,et al. The bifurcations of separatrix contours and chaos , 1993 .
[30] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .
[31] Sebastian Wieczorek,et al. Bifurcations of n-homoclinic orbits in optically injected lasers , 2005 .
[32] Bernd Krauskopf,et al. Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity , 2003 .