Structure of saddle-node and cusp bifurcations of periodic orbits near a non-transversal T-point

Non-transversal T-points have been recently found in problems from many different fields: electronic circuits, pendula, and laser problems. In this work, we study a model based on the construction of a Poincaré map that describes the behaviour of curves of saddle-node and cusp bifurcations in the vicinity of such a non-transversal T-point. This model is also able to predict, reproduce, and explain the numerical results previously obtained in Chua’s equation.

[1]  Bernd Krauskopf,et al.  Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation , 2006 .

[2]  Alejandro J. Rodríguez-Luis,et al.  The non-transverse Shil'nikov-Hopf bifurcation: uncoupling of homoclinic orbits and homoclinic tangencies , 1999 .

[3]  Isolas, cusps and global bifurcations in an electronic oscillator , 1997 .

[4]  Jeroen S. W. Lamb,et al.  Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3 , 2005 .

[5]  综合社会科学 The London Mathematical Society , 2012, From Servant to Queen: A Journey through Victorian Mathematics.

[6]  Bernd Krauskopf,et al.  A planar model system for the saddle-node Hopf bifurcation with global reinjection , 2004 .

[7]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[8]  Antonio Algaba,et al.  Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy , 2003, Int. J. Bifurc. Chaos.

[9]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[10]  E. Freire,et al.  T-Points in a Z2-Symmetric Electronic Oscillator. (I) Analysis , 2002 .

[11]  Mario A. Natiello,et al.  Accumulations of T-points in a model for solitary pulses in an excitable reaction-diffusion medium , 2005 .

[12]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[13]  Xiao-Biao Lin,et al.  Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Chai Wah Wu,et al.  LORENZ EQUATION AND CHUA’S EQUATION , 1996 .

[15]  Antonio Algaba,et al.  Open-to-Closed Curves of saddle-Node bifurcations of Periodic orbits Near a Nontransversal T-Point in Chua's equation , 2006, Int. J. Bifurc. Chaos.

[16]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[17]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[18]  R. Thom Structural stability and morphogenesis , 1977, Pattern Recognition.

[19]  Vladimir I. Arnold,et al.  Singularity Theory I , 1998 .

[20]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[21]  Edgar Knobloch,et al.  Unfolding a Tangent Equilibrium-to-Periodic Heteroclinic Cycle , 2009, SIAM J. Appl. Dyn. Syst..

[22]  Carlo R. Laing,et al.  Successive homoclinic tangencies to a limit cycle , 1995 .

[23]  Alejandro J. Rodríguez-Luis,et al.  Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model , 2001, Int. J. Bifurc. Chaos.

[24]  Alejandro J. Rodríguez-Luis,et al.  Closed Curves of Global bifurcations in Chua's equation: a Mechanism for their Formation , 2003, Int. J. Bifurc. Chaos.

[25]  M. Čadek Singularities and groups in bifurcation theory, volume I , 1990 .

[26]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[27]  Alejandro J. Rodríguez-Luis,et al.  Nontransversal curves of T-points: a source of closed curves of global bifurcations , 2002 .

[28]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[29]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[30]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[31]  Sebastian Wieczorek,et al.  Bifurcations of n-homoclinic orbits in optically injected lasers , 2005 .

[32]  Bernd Krauskopf,et al.  Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity , 2003 .