Decoding algal genomes: tracing back the history of photosynthetic life on Earth.

The last decade has witnessed outstanding progress in sequencing the genomes of photosynthetic eukaryotes, from major cereal crops to single celled marine phytoplankton. For the algae, we now have whole genome sequences from green, red, and brown representatives, and multiple efforts based on comparative and functional genomics approaches have provided information about the unicellular origins of higher plants, and about the evolution of photosynthetic life in general. Here we present some of the highlights from such studies, including the endosymbiotic origins of photosynthetic protists and their positioning with respect to plants and animals, the evolution of multicellularity in photosynthetic lineages, the role of sex in unicellular algae, and the potential relevance of epigenetic processes in contributing to the adaptation of algae to their environment.

[1]  A. Grossman,et al.  Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. , 2011, Molecular biology and evolution.

[2]  Z. Cohen,et al.  Unraveling algal lipid metabolism: Recent advances in gene identification. , 2011, Biochimie.

[3]  Guiling Sun,et al.  Algal genes in the closest relatives of animals. , 2010, Molecular biology and evolution.

[4]  A. Falciatore,et al.  An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light , 2010, Proceedings of the National Academy of Sciences.

[5]  Hervé Moreau,et al.  Genomic insights into photosynthesis in eukaryotic phytoplankton. , 2010, Trends in plant science.

[6]  Robert Eugene Blankenship Early Evolution of Photosynthesis1 , 2010, Plant Physiology.

[7]  N. Grimsley,et al.  Marine Prasinovirus Genomes Show Low Evolutionary Divergence and Acquisition of Protein Metabolism Genes by Horizontal Gene Transfer , 2010, Journal of Virology.

[8]  Jean-Michel Claverie,et al.  The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W] , 2010, Plant Cell.

[9]  J. Jurka,et al.  Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri , 2010, Science.

[10]  Ahmed Moustafa,et al.  Differential gene retention in plastids of common recent origin. , 2010, Molecular biology and evolution.

[11]  Jennifer H. Wisecaver,et al.  Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata , 2010, BMC Genomics.

[12]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[13]  C. Howe,et al.  Biodiesel from algae: challenges and prospects. , 2010, Current opinion in biotechnology.

[14]  D. Zilberman,et al.  Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation , 2010, Science.

[15]  Wendy S. Schackwitz,et al.  One Bacterial Cell, One Complete Genome , 2010, PloS one.

[16]  M. Pellegrini,et al.  Evolution of an Expanded Sex-Determining Locus in Volvox , 2010, Science.

[17]  M. Pellegrini,et al.  Conservation and divergence of methylation patterning in plants and animals , 2010, Proceedings of the National Academy of Sciences.

[18]  G. Michel,et al.  Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota , 2010, Nature.

[19]  P. Keeling The endosymbiotic origin, diversification and fate of plastids , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  K. Ljung,et al.  Auxin Metabolism and Function in the Multicellular Brown Alga Ectocarpus siliculosus1[W] , 2010, Plant Physiology.

[21]  Robert E. Jinkerson,et al.  Genetic Engineering of Algae for Enhanced Biofuel Production , 2010, Eukaryotic Cell.

[22]  K. Niklas,et al.  The evolution of the land plant life cycle. , 2010, The New phytologist.

[23]  C. Bowler,et al.  Oceanographic and biogeochemical insights from diatom genomes. , 2010, Annual review of marine science.

[24]  N. Grimsley,et al.  Cryptic sex in the smallest eukaryotic marine green alga. , 2010, Molecular biology and evolution.

[25]  J. Weissenbach,et al.  Digital expression profiling of novel diatom transcripts provides insight into their biological functions , 2010, Genome Biology.

[26]  C. Bowler,et al.  Potential impact of stress activated retrotransposons on genome evolution in a marine diatom , 2009, BMC Genomics.

[27]  A. Vardi,et al.  Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton , 2009, Science.

[28]  F. Corellou,et al.  Clocks in the Green Lineage: Comparative Functional Analysis of the Circadian Architecture of the Picoeukaryote Ostreococcus[W] , 2009, The Plant Cell Online.

[29]  J. Archibald,et al.  Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. , 2009, The Journal of heredity.

[30]  Karl J Niklas,et al.  The evolutionary development of plant body plans. , 2009, Functional plant biology : FPB.

[31]  A. Amato,et al.  Mitosis in diatoms: rediscovering an old model for cell division , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  Debashish Bhattacharya,et al.  Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms , 2009, Science.

[33]  A. Falciatore,et al.  Gene silencing in the marine diatom Phaeodactylum tricornutum , 2009, Nucleic acids research.

[34]  F. Rohwer,et al.  Viruses manipulate the marine environment , 2009, Nature.

[35]  J. Fuhrman General Distributions and the 'rare Biosphere' Microbial Community Structure and Its Functional Implications Review Insight , 2022 .

[36]  A. Hérissé,et al.  Origin and Radiation of the Earliest Vascular Land Plants , 2009, Science.

[37]  K. Ishida,et al.  Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora , 2009, Current Biology.

[38]  A. Salamov,et al.  Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas , 2009, Science.

[39]  N. Simon,et al.  Diversity and evolution of marine phytoplankton. , 2009, Comptes rendus biologies.

[40]  Richard Gordon,et al.  The Glass Menagerie: diatoms for novel applications in nanotechnology. , 2009, Trends in biotechnology.

[41]  E. Virginia Armbrust,et al.  Ferritin is used for iron storage in bloom-forming marine pennate diatoms , 2009, Nature.

[42]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[43]  Thomas Mock,et al.  Genomic insights into marine microalgae. , 2008, Annual review of genetics.

[44]  Nicole Poulsen,et al.  Diatoms-from cell wall biogenesis to nanotechnology. , 2008, Annual review of genetics.

[45]  M. Allen,et al.  The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection , 2008, Proceedings of the National Academy of Sciences.

[46]  Karl J. Niklas,et al.  Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form , 2008, Theory in Biosciences.

[47]  S. Baldauf An overview of the phylogeny and diversity of eukaryotes , 2008 .

[48]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[49]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[50]  T. Kuroiwa,et al.  Centromere structures highlighted by the 100%-complete Cyanidioschyzon merolae Genome , 2008, Plant signaling & behavior.

[51]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[52]  Karl J. Niklas,et al.  Endosymbiosis, cell evolution, and speciation , 2005, Theory in Biosciences.

[53]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[54]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[55]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[56]  A. Falciatore,et al.  IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOM THALASSIOSIRA PSEUDONANA 1 , 2007 .

[57]  G. Hannon,et al.  A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. , 2007, Genes & development.

[58]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[59]  Matthew D. Johnson,et al.  Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra , 2007, Nature.

[60]  D. Bhattacharya,et al.  Response to Theissen and Martin , 2006, Current Biology.

[61]  W. Martin,et al.  The difference between organelles and endosymbionts , 2006, Current Biology.

[62]  W. Yih,et al.  First successful culture of the marine dinoflagellate Dinophysis acuminata , 2006 .

[63]  Thomas A. Richards,et al.  Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements , 2006, Eukaryotic Cell.

[64]  B. De Baets,et al.  Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Cavalier-smith,et al.  Cell evolution and Earth history: stasis and revolution , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[66]  C. Bowler,et al.  An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. , 2006, Current opinion in plant biology.

[67]  R. De Wit,et al.  'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? , 2006, Environmental microbiology.

[68]  T. Simonite Protists push animals aside in rule revamp , 2005, Nature.

[69]  Steven Maere,et al.  Genome duplication and the origin of angiosperms. , 2005, Trends in ecology & evolution.

[70]  Julian Parkhill,et al.  Complete Genome Sequence and Lytic Phase Transcription Profile of a Coccolithovirus , 2005, Science.

[71]  T. Pröschold,et al.  Portrait of a Species , 2005, Genetics.

[72]  Naiara Rodríguez-Ezpeleta,et al.  Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.

[73]  T. Bestor,et al.  Eukaryotic cytosine methyltransferases. , 2005, Annual review of biochemistry.

[74]  A. Weber,et al.  Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae1 , 2005, Plant Physiology.

[75]  Kentaro Inoue,et al.  Evolution of the general protein import pathway of plastids (Review) , 2005, Molecular membrane biology.

[76]  R. Hobza,et al.  Gender in plants: sex chromosomes are emerging from the fog. , 2004, Trends in genetics : TIG.

[77]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[78]  G. McFadden,et al.  Evolution: Red Algal Genome Affirms a Common Origin of All Plastids , 2004, Current Biology.

[79]  C. Pedrós-Alió,et al.  Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. , 2004, Protist.

[80]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[81]  K. Niklas,et al.  Springer-Verlag 2004 , 2004 .

[82]  D. Bhattacharya,et al.  Dating algal origin using molecular clock methods. , 2004, Protist.

[83]  J. Wong,et al.  Histone-Like Proteins of the Dinoflagellate Crypthecodinium cohnii Have Homologies to Bacterial DNA-Binding Proteins , 2003, Eukaryotic Cell.

[84]  Mario De Stefano,et al.  The phylogeny of the diatoms. , 2003, Progress in molecular and subcellular biology.

[85]  P. Keeling,et al.  Recycled plastids: a 'green movement' in eukaryotic evolution. , 2002, Trends in genetics : TIG.

[86]  Karsten Hokamp,et al.  Extensive genomic duplication during early chordate evolution , 2002, Nature Genetics.

[87]  André Gilles,et al.  Evidence of en bloc duplication in vertebrate genomes , 2002, Nature Genetics.

[88]  Charles F. Delwiche,et al.  The Closest Living Relatives of Land Plants , 2001, Science.

[89]  Frank Uhlmann,et al.  Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19 , 2001, Nature Cell Biology.

[90]  V. Norris,et al.  Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. , 2001, Biochimie.

[91]  Matthew D. Johnson,et al.  Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum , 2000, Nature.

[92]  M. Rumpho,et al.  Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. , 2000, Plant physiology.

[93]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[94]  J. Palmer,et al.  Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. , 1996, Molecular biology and evolution.

[95]  L. Rothschild Protozoa, protista, protoctista: What's in a name? , 1989, Journal of the history of biology.

[96]  L. Margulis,et al.  Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth , 1982 .

[97]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .

[98]  Ernst Haeckel,et al.  Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie. Band 1: Allgemeine Anatomie. Band 2: Allgemeine Entwicklungsgeschichte , 1866 .

[99]  Ernst Haeckel Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie, von Ernst Haeckel , 1866 .