Branched cyclic regular coverings over platonic maps

A map is a 2-cell decomposition of a closed surface. A map on an orientable surface is called regular if its group of orientation-preserving automorphisms acts transitively on the set of darts (edges endowed with an orientation). In this paper we investigate regular maps which are regular covers over platonic maps with a cyclic group of covering transformations. We describe all such maps in terms of parametrised group presentations. This generalises the work of Jones and Surowski [G.A. Jones, D.B. Surowski, Cyclic regular coverings of the Platonic maps, European J. Combin. 21 (2000) 333-345] classifying the cyclic regular coverings over platonic maps with branched points exclusively at vertices, or at face-centres.

[1]  G. Jones,et al.  Theory of Maps on Orientable Surfaces , 1978 .

[2]  Stephen E. Wilson Bicontactual regular maps. , 1985 .

[3]  Gareth Jones,et al.  Elementary abelian regular coverings of Platonic maps , 2015 .

[4]  E. A. Maxwell Generators and Relations for Discrete Groups. By H. S. M. Coxeter and W O. Moser. Pp. ix, 161. DM. 32. (Second Edition; Springer-Verlag) , 1966, The Mathematical Gazette.

[5]  Norman Biggs,et al.  The Symplectic Representation of Map Automorphisms , 1972 .

[6]  Gareth A. Jones,et al.  Cohomological Constructions of Regular Cyclic Coverings of the Platonic Maps , 2000, Eur. J. Comb..

[7]  N. Biggs Algebraic Graph Theory , 1974 .

[8]  David B. Surowski Lifting map automorphisms and MacBeath's theorem , 1990, J. Comb. Theory, Ser. B.

[9]  Gareth A. Jones,et al.  Regular Cyclic Coverings of the Platonic Maps , 2000, Eur. J. Comb..

[10]  David B. Surowski,et al.  Regular cyclic coverings of regular affine maps , 2003, Eur. J. Comb..

[11]  Martin Skoviera,et al.  Regular Homomorphisms and Regular Map , 2002, Eur. J. Comb..

[12]  Jonathan L. Gross,et al.  Voltage graphs , 1974, Discret. Math..

[13]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[14]  David B. Surowski,et al.  Homological methods in algebraic map theory , 2003, Eur. J. Comb..

[15]  Mustafa Kazaz ELEMENTARY ABELIAN COVERINGS OF REGULAR HYPERMAPS OF TYPES (5, 5, 5) AND (5, 2, 10) OF GENUS 2 , 2009 .

[16]  F. A. Sherk The regular maps on a surface of genus three , 1959 .

[17]  Stephen E Wilson Parallel Products in Groups and Maps , 1994 .

[18]  Cai Heng Li,et al.  Regular maps whose groups do not act faithfully on vertices, edges, or faces , 2005, Eur. J. Comb..

[19]  G. A. Miller Generalization of the groups of genus zero , 1907 .

[20]  Martin Skoviera,et al.  Regular embeddings of cycles with multiple edges revisited , 2014, Ars Math. Contemp..

[21]  Martin Skoviera,et al.  Regular Embeddings of Canonical Double Coverings of Graphs , 1996, J. Comb. Theory, Ser. B.

[22]  M. Kazaz,et al.  Homology action on regular hypermaps of genus 2 , 2002 .

[23]  Jozef Širáň,et al.  Coverings of Graphs and Maps, Orthogonality, and Eigenvectors , 2001 .