Influence of vibrational anharmonicity and vacancies on the thermodynamic properties of rare gas crystals

A statistical method is used to calculate thermodynamic properties of Ar, Kr and Xe (isobaric and isochoric heat capacity, bulk modulus, thermal expansion coefficient, interatomic distances, Gruneisen parameter), and good agreement with experimental values is observed. It is shown that at high temperature, slightly above the melting point of the rare gas crystals, an instability of the crystalline state occurs. As the temperature approaches this instability, the isobaric heat capacity and the thermal expansion coefficient show strong increases similar to the experimentally observed anomalies.

[1]  W. Holzapfel,et al.  Equations of state and thermodynamic properties of rare-gas solids under pressure calculated using a self-consistent statistical method , 2003 .

[2]  A. I. Karasevskii,et al.  Binary distribution functions of atoms of simple crystals , 2002 .

[3]  G. Reiss,et al.  Equations of State for Rare Gas Solids under Strong Compression , 2001 .

[4]  G. K. Horton,et al.  Thermal and elastic properties of solid neon , 2000 .

[5]  W. Holzapfel Equations of state for solids under strong compression , 1998 .

[6]  J. Giuntini,et al.  A statistical theory of mixtures: Application in the calculation of the vacancy formation parameters in rare gas solids , 1995 .

[7]  R. Norberg,et al.  Rare Gas Solids , 1984 .

[8]  H. Coufal,et al.  Thermodynamic Properties of Hypothetical Perfect and Real Krypton Crystals , 1971, July 16.

[9]  M. Klein,et al.  An Improved Self-Consistent Phonon Approximation , 1968 .

[10]  D. Losee,et al.  Thermal-Expansion Measurements and Thermodynamics of Solid Krypton , 1968 .

[11]  D. Losee,et al.  Equilibrium Vacancy Concentration Measurements on Solid Krypton , 1968 .

[12]  H. Horner Lattice dynamics of quantum crystals , 1967 .

[13]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[14]  T. Koehler Theory of the Self-Consistent Harmonic Approximation with Application to Solid Neon , 1966 .

[15]  M. Klein,et al.  Rare gas solids , 1976 .

[16]  N. Boccara,et al.  Theorie microscopique des transitions s’accompagnant d’ une modification de la structure cristalline , 1965 .