Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation

[1]  M. Antonietti,et al.  Heteroatom-doped noble carbon-tailored mixed matrix membranes with ultrapermeability for efficient CO2 separation. , 2023, Materials horizons.

[2]  Wenju Jiang,et al.  Recent Progress in Ternary Mixed Matrix Membranes for CO2 Separation , 2023, Green Energy & Environment.

[3]  Dan Zhao,et al.  Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities , 2023, Nature Materials.

[4]  P. Budd,et al.  CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1 , 2023, Journal of Membrane Science.

[5]  Guipeng Yu,et al.  Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation , 2023, Journal of Membrane Science.

[6]  Junyong Zhu,et al.  Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture , 2022, Journal of Membrane Science.

[7]  A. Knebel,et al.  Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation , 2022, Nature Nanotechnology.

[8]  Xiuyun Sun,et al.  Incorporating KAUST-7 into PIM-1 towards mixed matrix membranes with long-term stable CO2/CH4 separation performance , 2022, Journal of Membrane Science.

[9]  Juewen Liu,et al.  Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media , 2022, Green Energy & Environment.

[10]  Z. Wang,et al.  Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving. , 2022, ACS applied materials & interfaces.

[11]  C. Lau,et al.  Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture , 2021, Proceedings of the National Academy of Sciences.

[12]  Zhen Wang,et al.  Dual-function biomimetic carrier based facilitated transport mixed matrix membranes with high stability for efficient CO2/N2 separation , 2021, Separation and Purification Technology.

[13]  L. Shao,et al.  Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design , 2021, Separation and Purification Technology.

[14]  T. Tan,et al.  PEO-based CO2-philic mixed matrix membranes compromising N-rich ultramicroporous polyaminals for superior CO2 capture , 2021, Journal of Membrane Science.

[15]  Fan Yang,et al.  Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance , 2021 .

[16]  J. Long,et al.  Porous materials for carbon dioxide separations , 2021, Nature Materials.

[17]  Tae-Hyun Kim,et al.  Efficient CO 2 Separation Using a PIM‐PI‐Functionalized UiO‐66 MOF Incorporated Mixed Matrix Membrane in a PIM‐PI‐1 Polymer , 2021, Macromolecular Materials and Engineering.

[18]  B. Lotsch,et al.  Interlayer Interactions as Design Tool for Large-Pore COFs , 2021, Journal of the American Chemical Society.

[19]  W. Ho,et al.  Polymeric membranes for CO2 separation and capture , 2021 .

[20]  P. Budd,et al.  2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation , 2021 .

[21]  Zhongyi Jiang,et al.  Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation , 2021 .

[22]  P. Budd,et al.  Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives , 2020 .

[23]  J. Long,et al.  Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture , 2020 .

[24]  J. Long,et al.  A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal , 2020 .

[25]  Kai Yang,et al.  Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance , 2020 .

[26]  H. Yin,et al.  Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation , 2020 .

[27]  Shaoxian Song,et al.  Recyclable Fe3O4@Polydopamine (PDA) nanofluids for highly efficient solar evaporation , 2020 .

[28]  Omid T. Qazvini,et al.  Effective enhancement of selectivities and capacities for CO 2 over CH 4 and N 2 of polymers of intrinsic microporosity via postsynthesis metalation , 2020 .

[29]  Li Cao,et al.  Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading , 2020 .

[30]  Jixiao Wang,et al.  Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix , 2020 .

[31]  P. Ajayan,et al.  A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures , 2020, Nature Communications.

[32]  T. Liu,et al.  Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation , 2019 .

[33]  T. Tan,et al.  Engineering of filler/polymer interface in metal-organic framework-based mixed-matrix membranes to enhance gas separation. , 2019, Chemistry, an Asian journal.

[34]  M. Ferrari,et al.  Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity , 2019, Energy & Environmental Science.

[35]  Jin-Ming Lin,et al.  Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry , 2019, Chemical Engineering Journal.

[36]  S. Gierlotka,et al.  Nanoparticle Size Effect on Water Vapour Adsorption by Hydroxyapatite , 2019, Nanomaterials.

[37]  B. Bruggen,et al.  Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering , 2019, Progress in Polymer Science.

[38]  Saif A. Khan,et al.  Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers , 2019, Journal of Materials Chemistry A.

[39]  Yatao Zhang,et al.  Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation , 2019, Journal of Membrane Science.

[40]  Jixiao Wang,et al.  Penetrated COF Channels: Amino Environment and Suitable Size for CO2 Preferential Adsorption and Transport in Mixed Matrix Membranes. , 2019, ACS applied materials & interfaces.

[41]  Gongpin Liu,et al.  Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2 S and CO2 from Natural Gas. , 2018, Angewandte Chemie.

[42]  P. Budd,et al.  Impeded physical aging in PIM-1 membranes containing graphene-like fillers , 2018, Journal of Membrane Science.

[43]  Ye Yuan,et al.  Surface Pore Engineering of Covalent Organic Frameworks for Ammonia Capture through Synergistic Multivariate and Open Metal Site Approaches , 2018, ACS central science.

[44]  Solomon F. Brown,et al.  Carbon capture and storage (CCS): the way forward , 2018 .

[45]  B. Freeman,et al.  Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1) , 2017 .

[46]  M. Ferrari,et al.  Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.

[47]  R. White,et al.  On Mass-Thickness Contrast in Annular Dark-Field STEM-in-SEM Images , 2017, Microscopy and Microanalysis.

[48]  H. Kusuda,et al.  Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles , 2017, Nature Energy.

[49]  Zhongyi Jiang,et al.  Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation , 2017 .

[50]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[51]  P. Budd,et al.  Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation , 2017, Membranes.

[52]  P. Budd,et al.  Mixed Matrix Membranes based on UiO-66 MOFs in the Polymer of Intrinsic Microporosity PIM-1 , 2017 .

[53]  Hongji Zhang,et al.  Multi-functional polydopamine coating: simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes , 2016 .

[54]  R. Banerjee,et al.  Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation. , 2016, Chemistry.

[55]  Lin Hao,et al.  Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance , 2015 .

[56]  B. Freeman,et al.  Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship , 2015 .

[57]  I. Pinnau,et al.  Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations , 2014 .

[58]  Christopher R. Mason,et al.  Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 , 2013 .

[59]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[60]  L. Robeson,et al.  The upper bound revisited , 2008 .

[61]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.