A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries

We present a fully-polynomial randomized approximation scheme for computing the permanent of an arbitrary matrix with non-negative entries.

[1]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[2]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[3]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[4]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[5]  W. T. Tutte A Short Proof of the Factor Theorem for Finite Graphs , 1954, Canadian Journal of Mathematics.

[6]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[7]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[8]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[9]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[10]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[11]  Mark Jerrum,et al.  Fast Uniform Generation of Regular Graphs , 1990, Theor. Comput. Sci..

[12]  Peter Winkler,et al.  On the number of Eulerian orientations of a graph , 1996 .

[13]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[14]  Alexander I. Barvinok,et al.  Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.

[15]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .