An inflation model for massive primordial black holes to interpret the JWST observations

The first observations of the James Webb Space Telescope (JWST) have identified six massive galaxy candidates with the stellar masses $M_\ast\gtrsim 10^{10}\,M_\odot$ at high redshifts $7.4\lesssim z\lesssim 9.1$, with two most massive high-$z$ objects having the cumulative comoving number densities $n_{\rm G}$ up to $1.6\times 10^{-5}\, {\rm Mpc}^{-3}$. The presence of such massive sources in the early universe challenges the standard $\Lambda$CDM model since the needed star formation efficiency is unrealistically high. This tension can be alleviated via the accretion of massive primordial black holes (PBHs). In this work, with the updated data from the first JWST observations, we find that the PBHs with mass $10^8\,M_\odot\lesssim M_{\rm PBH}\lesssim 10^{11}\,M_\odot$ can act as the seeds of extremely massive galaxies even with a low abundance $10^{-7}\lesssim f_{\rm PBH}\lesssim 10^{-3}$. We construct an ultraslow-roll inflation model and investigate its possibility of producing the required PBHs. We explore the model in two cases, depending on whether there is a perfect plateau on the inflaton potential. If the plateau is allowed to incline slightly, our model can produce the PBHs that cover the required PBH mass and abundance range to explain the JWST data.

[1]  E. Copeland,et al.  Primordial black holes and stochastic inflation beyond slow roll. Part I. Noise matrix elements , 2023, Journal of Cosmology and Astroparticle Physics.

[2]  S. Giri,et al.  Warm dark matter constraints from the JWST , 2023, 2303.14239.

[3]  Y. Cai,et al.  Rapidly growing primordial black holes as seeds of the massive high-redshift JWST Galaxies , 2023, 2303.09391.

[4]  K. Postnov,et al.  On the Primordial Binary Black Hole Mergings in LIGO-Virgo-Kagra Data , 2023, Physics of Particles and Nuclei.

[5]  Ji-Xiang Zhao,et al.  Primordial black holes and scalar-induced gravitational waves from the perturbations on the inflaton potential in peak theory , 2023, Physical Review D.

[6]  Deng Wang,et al.  JWST high redshift galaxy observations have a strong tension with Planck CMB measurements , 2023, 2301.00347.

[7]  Jia-Sheng Huang,et al.  First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73 , 2022, The Astrophysical Journal Letters.

[8]  M. Raidal,et al.  Did JWST observe imprints of axion miniclusters or primordial black holes? , 2022, Physical Review D.

[9]  A. Riotto,et al.  High-redshift JWST Observations and Primordial Non-Gaussianity , 2022, The Astrophysical Journal.

[10]  Y. Gong,et al.  Fuzzy Dark Matter as a Solution to Reconcile the Stellar Mass Density of High-z Massive Galaxies and Reionization History , 2022, The Astrophysical Journal.

[11]  A. Ferrara,et al.  Blue monsters. Why are JWST super-early, massive galaxies so blue? , 2022, Monthly Notices of the Royal Astronomical Society.

[12]  Boyuan Liu,et al.  Accelerating Early Massive Galaxy Formation with Primordial Black Holes , 2022, The Astrophysical Journal Letters.

[13]  S. Furlanetto,et al.  Balancing the efficiency and stochasticity of star formation with dust extinction in z ≳ 10 galaxies observed by JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[14]  A. Fontana,et al.  High-redshift Galaxies from Early JWST Observations: Constraints on Dark Energy Models , 2022, The Astrophysical Journal Letters.

[15]  S. Wilkins,et al.  Extreme value statistics of the halo and stellar mass distributions at high redshift: are JWST results in tension with ΛCDM? , 2022, Monthly Notices of the Royal Astronomical Society.

[16]  L. Ho,et al.  A Lower Bound of Star Formation Activity in Ultra-high-redshift Galaxies Detected with JWST: Implications for Stellar Populations and Radiation Sources , 2022, Astrophysical Journal Letters.

[17]  M. Oguri,et al.  A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch , 2022, The Astrophysical Journal Supplement Series.

[18]  M. Boylan-Kolchin Stress testing ΛCDM with high-redshift galaxy candidates , 2022, Nature Astronomy.

[19]  A. Pallottini,et al.  On the stunning abundance of super-early, luminous galaxies revealed by JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[20]  G. Brammer,et al.  A population of red candidate massive galaxies ~600 Myr after the Big Bang , 2022, Nature.

[21]  J. Kneib,et al.  Revealing Galaxy Candidates out to $z \sim 16$ with JWST Observations of the Lensing Cluster SMACS0723 , 2022, 2207.12338.

[22]  J. Dunlop,et al.  The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 – 15 from deep JWST and ground-based near-infrared imaging , 2022, Monthly Notices of the Royal Astronomical Society.

[23]  L. Y. Aaron Yung,et al.  A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging , 2022, The Astrophysical Journal Letters.

[24]  C. Conselice,et al.  Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.

[25]  T. Papanikolaou Gravitational waves induced from primordial black hole fluctuations: the effect of an extended mass function , 2022, Journal of Cosmology and Astroparticle Physics.

[26]  R. Bouwens,et al.  Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST , 2022, The Astrophysical Journal Letters.

[27]  Boyuan Liu,et al.  Effects of stellar-mass primordial black holes on first star formation , 2022, Monthly Notices of the Royal Astronomical Society.

[28]  S. Räsänen,et al.  Implications of stochastic effects for primordial black hole production in ultra-slow-roll inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[29]  Qing Wang,et al.  Primordial black holes from the perturbations in the inflaton potential in peak theory , 2021, Physical Review D.

[30]  M. Zevin,et al.  Stochastic gravitational-wave background as a tool for investigating multi-channel astrophysical and primordial black-hole mergers , 2021, Astronomy & Astrophysics.

[31]  Jiong Lin,et al.  Double-peaked inflation model: Scalar induced gravitational waves and primordial-black-hole suppression from primordial non-Gaussianity , 2021, Physical Review D.

[32]  K. Ng,et al.  Power spectrum of primordial perturbations during ultra-slow-roll inflation with back reaction effects , 2021, Physics Letters B.

[33]  Rui Zheng,et al.  On Primordial Black Holes and secondary gravitational waves generated from inflation with solo/multi-bumpy potential , 2021, Chinese Physics C.

[34]  A. Riotto,et al.  Threshold for primordial black holes. II. A simple analytic prescription , 2021 .

[35]  S. Räsänen,et al.  Non-Gaussian Tail of the Curvature Perturbation in Stochastic Ultraslow-Roll Inflation: Implications for Primordial Black Hole Production. , 2020, Physical review letters.

[36]  Rafid Mahbub,et al.  Numerically modeling stochastic inflation in slow-roll and beyond , 2020, 2010.12685.

[37]  J. Silk,et al.  Primordial black holes and secondary gravitational waves from ultraslow roll and punctuated inflation , 2020, Physical Review D.

[38]  Z. Lalak,et al.  Primordial black holes as dark matter and gravitational waves from bumpy axion inflation , 2020, Journal of Cosmology and Astroparticle Physics.

[39]  C. Byrnes,et al.  The power spectrum on small scales: robust constraints and comparing PBH methodologies , 2020, Journal of Cosmology and Astroparticle Physics.

[40]  R. Sheth,et al.  Analytical thresholds for black hole formation in general cosmological backgrounds , 2020, Journal of Cosmology and Astroparticle Physics.

[41]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, Annual Review of Nuclear and Particle Science.

[42]  R. Cai,et al.  Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models , 2020, Physical Review D.

[43]  J. Yokoyama,et al.  Constraints on primordial black holes , 2020, Reports on progress in physics. Physical Society.

[44]  H. Arnold,et al.  Virgo , 2020, The Photographic Atlas of the Stars.

[45]  V. Sahni,et al.  Primordial black holes from a tiny bump/dip in the inflaton potential , 2019, Journal of Cosmology and Astroparticle Physics.

[46]  R. Sheth,et al.  Universal threshold for primordial black hole formation , 2019, Physical Review D.

[47]  A. Escrivá Simulation of primordial black hole formation using pseudo-spectral methods , 2019, Physics of the Dark Universe.

[48]  D. Inman,et al.  Early structure formation in primordial black hole cosmologies , 2019, Physical Review D.

[49]  M. Viel,et al.  Lyman-α Forest Constraints on Primordial Black Holes as Dark Matter. , 2019, Physical review letters.

[50]  I. Musco Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations , 2018, Physical Review D.

[51]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  J. García-Bellido,et al.  Quantum diffusion beyond slow-roll: implications for primordial black-hole production , 2018, Journal of Cosmology and Astroparticle Physics.

[53]  K. Kohri,et al.  Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold , 2018, Progress of Theoretical and Experimental Physics.

[54]  G. Tasinato,et al.  Mechanisms for primordial black hole production in string theory , 2018, Journal of Cosmology and Astroparticle Physics.

[55]  F. Pedro,et al.  Primordial black holes from string inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[56]  J. Silk,et al.  Primordial black holes as generators of cosmic structures , 2018, 1801.00672.

[57]  J. Silk,et al.  Limits on primordial black holes from $\mu$ distortions in cosmic microwave background , 2017, 1710.06945.

[58]  M. Taoso,et al.  Primordial black hole dark matter from single field inflation , 2017, 1709.05565.

[59]  C. Germani,et al.  On primordial black holes from an inflection point , 2017, 1706.04226.

[60]  Y. Inoue,et al.  New X-ray bound on density of primordial black holes , 2017, 1705.00791.

[61]  J. García-Bellido,et al.  Primordial black holes from single field models of inflation , 2017, 1702.03901.

[62]  H. Baumgardt,et al.  Unveiling Gargantua: A new search strategy for the most massive central cluster black holes , 2015, 1509.04782.

[63]  Brent E. Stephens,et al.  Planck , 2014, ACM SIGCOMM Computer Communication Review.

[64]  M. Sasaki,et al.  Calculating the mass fraction of primordial black holes , 2014, 1405.7023.

[65]  J. Yokoyama,et al.  Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation , 2013, 1310.3007.

[66]  K. Kohri,et al.  Threshold of primordial black hole formation , 2013, 1309.4201.

[67]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[68]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[69]  J. Miller,et al.  Primordial black hole formation in the early universe: critical behaviour and self-similarity , 2012, 1201.2379.

[70]  A. Polnarev,et al.  Primordial black hole formation in the radiative era: investigation of the critical nature of the collapse , 2008, 0811.1452.

[71]  L. Rezzolla,et al.  Computations of primordial black-hole formation , 2004, gr-qc/0412063.

[72]  Karim A. Malik,et al.  paper added in error by admin team: I do not seem to be able to delete it , 2004, astro-ph/0403181.

[73]  Andrei Linde,et al.  De Sitter vacua in string theory , 2003, hep-th/0301240.

[74]  M. Sakellariadou,et al.  Dynamical Constraints on Dark Matter in Compact Objects , 1999 .

[75]  J. Niemeyer,et al.  Dynamics of primordial black hole formation , 1999, astro-ph/9901292.

[76]  S. Matarrese,et al.  Second-order perturbations of the Einstein-de Sitter Universe , 1997 .

[77]  A. Burkert The Formation of Elliptical Galaxies , 1994, astro-ph/9403009.

[78]  節夫 佐々木 Large Scale Quantum Fluctuations in the Inflationary Universe (進化の力学への場の理論的アプロ-チ--基研短期研究会報告) , 1987 .

[79]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[80]  M. Rees,et al.  Can pregalactic objects generate galaxies , 1984 .

[81]  J. Silk,et al.  Can graininess in the early universe make galaxies , 1983 .

[82]  B. Carr The Primordial black hole mass spectrum , 1975 .

[83]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[84]  B. A. Boom,et al.  Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO's and Advanced Virgo's Third Observing Run. , 2021, Physical review letters.

[85]  V. Mukhanov Quantum Theory of Gauge Invariant Cosmological Perturbations , 1988 .

[86]  P. Mészáros Primeval black holes and galaxy formation , 1975 .

[87]  Y. Zel’dovich,et al.  The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .