Making optical atomic clocks more stable with 10-16-level laser stabilization

[1]  Jun Ye,et al.  Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 × 10-16 inaccuracy , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  Thomas Legero,et al.  Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors , 2010, 1002.2070.

[3]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[4]  J. Lodewyck,et al.  Minimizing the dick effect in an optical lattice clock , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  D. Rugar,et al.  Optical clocks and relativity , 2013 .

[6]  R. Fox Temperature analysis of low-expansion Fabry-Perot cavities. , 2009, Optics express.

[7]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[8]  P. Lemonde,et al.  Ultrastable lasers based on vibration insensitive cavities , 2009, 0901.4717.

[9]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[10]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[11]  S. Dawkins,et al.  Considerations on the Measurement of the Stability of Oscillators with Frequency Counters , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[12]  L. Hollberg,et al.  Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[13]  Patrick Gill,et al.  Vibration insensitive optical cavity , 2007 .

[14]  J. Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2006, Optics letters.

[15]  Jun Ye,et al.  Optical Atomic Coherence at the 1-Second Time Scale , 2006, Science.

[16]  Jun Ye,et al.  Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .

[17]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[18]  Michael E. Tobar,et al.  Advances in atomic fountains , 2004 .

[19]  Patrick Gill,et al.  Subhertz-linewidth Nd:YAG laser. , 2004, Optics letters.

[20]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap. , 2003, Physical review letters.

[21]  M. Fejer,et al.  Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror , 2001, gr-qc/0105046.

[22]  B. Hehir,et al.  Direct approach. , 2002, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[23]  E. A. Curtis,et al.  Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. , 2001, Physical review letters.

[24]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[25]  Y. Levin Internal thermal noise in the LIGO test masses: A direct approach , 1997, gr-qc/9707013.

[26]  A. Clairon,et al.  Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[28]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  G. J. Dick,et al.  Local Oscillator Induced Instabilities in Trapped Ion Frequency Standards , 1987 .

[30]  M Sun,et al.  A direct approach. , 1987, Science.