Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies

[1]  Ying Zhang,et al.  The Early Warning for Overcharge Thermal Runaway of Lithium-Ion Batteries Based on a Composite Parameter , 2023, SSRN Electronic Journal.

[2]  J. Pinto,et al.  Simultaneous Strain and Temperature Discrimination in 18650 Li-ion Batteries Using Polarization-Maintaining Fiber Bragg Gratings , 2022, Batteries.

[3]  J. Tarascon,et al.  Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries , 2022, Nature Energy.

[4]  T. Vincent,et al.  In-situ temperature monitoring of a lithium-ion battery using an embedded thermocouple for smart battery applications , 2022, Journal of Energy Storage.

[5]  Yan Ma,et al.  A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction , 2022, Energy.

[6]  J. Baumberg,et al.  Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes , 2022, Nature Communications.

[7]  G. Cui,et al.  Thermal runaway routes of large-format lithium-sulfur pouch cell batteries , 2022, Joule.

[8]  J. Tarascon,et al.  Sensing as the key to battery lifetime and sustainability , 2022, Nature Sustainability.

[9]  J. Albert,et al.  Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors , 2022, Nature communications.

[10]  Ping Ping,et al.  A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse , 2022, eTransportation.

[11]  Hong Li,et al.  Enabling the thermal stability of solid electrolyte interphase in Li‐ion battery , 2021, InfoMat.

[12]  Liu Chaoqun,et al.  Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode , 2021 .

[13]  P. Qin,et al.  A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway , 2021 .

[14]  A. Jossen,et al.  Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging , 2020 .

[15]  Yayuan Liu,et al.  Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries , 2020, Nature Energy.

[16]  G. Cui,et al.  Revealing the multilevel thermal safety of lithium batteries , 2020 .

[17]  Betar M. Gallant,et al.  Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors , 2020 .

[18]  Yi Cui,et al.  Detection of Micro-Scale Li Dendrite via H2 Gas Capture for Early Safety Warning , 2020 .

[19]  Xuning Feng,et al.  Mitigating Thermal Runaway of Lithium-Ion Batteries , 2020 .

[20]  P. Shum,et al.  Investigation of a Bragg Grating-Based Fabry–Perot Structure Inscribed Using Femtosecond Laser Micromachining in an Adiabatic Fiber Taper , 2020, Applied Sciences.

[21]  Thomas G. Habetler,et al.  A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries , 2019, Journal of Power Sources.

[22]  André W. Marshall,et al.  Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays , 2019, Applied Energy.

[23]  Qingsong Wang,et al.  Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. , 2019, Journal of hazardous materials.

[24]  Qingsong Wang,et al.  A review of lithium ion battery failure mechanisms and fire prevention strategies , 2019, Progress in Energy and Combustion Science.

[25]  João L. Pinto,et al.  Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions , 2019, Applied Thermal Engineering.

[26]  Solomon Brown,et al.  Pursuing safer batteries: Thermal abuse of LiFePO4 cells , 2019, Journal of Power Sources.

[27]  João L. Pinto,et al.  Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries , 2019, Journal of Power Sources.

[28]  Kaiqi Xu,et al.  Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter , 2018, Journal of Thermal Analysis and Calorimetry.

[29]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[30]  João L. Pinto,et al.  Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study , 2017 .

[31]  Kyung Ho Kim,et al.  Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance , 2017 .

[32]  Ye Tao,et al.  A novel health indicator for on-line lithium-ion batteries remaining useful life prediction , 2016 .

[33]  Ralph E. White,et al.  A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell , 2016 .

[34]  M. R. Palacín,et al.  Why do batteries fail? , 2016, Science.

[35]  Hwa-Yaw Tam,et al.  In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing. , 2014, Optics express.

[36]  Cátia Leitão,et al.  Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage , 2013 .

[37]  H. Wiemhöfer,et al.  Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry , 2013 .

[38]  J. Albert,et al.  Tilted fiber Bragg grating sensors , 2013 .

[39]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[40]  K. Kang,et al.  Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries , 2012 .

[41]  H. Tam,et al.  High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. , 2011, Optics letters.

[42]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[43]  M. Armand,et al.  Building better batteries , 2008, Nature.

[44]  B. Fultz,et al.  XRD evidence of macroscopic composition inhomogeneities in the graphite–lithium electrode , 2007 .

[45]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[46]  I. Bennion,et al.  Direct writing of fibre Bragg gratings by femtosecond laser , 2004 .

[47]  C. Wan,et al.  Thermal Stability of the Solid Electrolyte Interface on Carbon Electrodes of Lithium Batteries , 2004 .

[48]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[49]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .

[50]  Michael A. Davis,et al.  Fiber grating sensors , 1997 .

[51]  D. Groggel Practical Nonparametric Statistics , 1972, Technometrics.

[52]  Xuning Feng,et al.  Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition , 2021 .

[53]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[54]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[55]  K. Jauch,et al.  † These authors contributed equally to this work. , 2009 .

[56]  Hui Yang,et al.  Investigations of the Exothermic Reactions of Natural Graphite Anode for Li-Ion Batteries during Thermal Runaway , 2005 .