Quantum error correction for beginners

Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspects of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large-scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large-scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. The development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future.

[1]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[2]  Ray Freeman,et al.  NMR population inversion using a composite pulse , 1979 .

[3]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[4]  Péter Gács Reliable computation with cellular automata , 1983, STOC '83.

[5]  Gerard J. Milburn,et al.  State reduction in quantum-counting quantum nondemolition measurements , 1984 .

[6]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[7]  H. Kopetz,et al.  The Evolution of Fault-Tolerant Computing , 1987, Dependable Computing and Fault-Tolerant Systems.

[8]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[9]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[10]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[12]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[13]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[14]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[16]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[17]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[18]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[20]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[21]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[23]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[25]  E. Knill,et al.  Accuracy threshold for quantum computation , 1996 .

[26]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[28]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[29]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[30]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[31]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[32]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[33]  P. Zanardi,et al.  Error avoiding quantum codes , 1997, quant-ph/9710041.

[34]  P. Knight,et al.  Quantum error correction in the presence of spontaneous emission. , 1996, quant-ph/9603022.

[35]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[36]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[37]  R. Cleve,et al.  Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.

[38]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[39]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[40]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[41]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[42]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[43]  Seth Lloyd,et al.  ANALOG QUANTUM ERROR CORRECTION , 1998 .

[44]  Samuel L. Braunstein Error Correction for Continuous Quantum Variables , 1998 .

[45]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[46]  J. Twamley,et al.  Motional quantum error correction , 1998, quant-ph/9811011.

[47]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[48]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[49]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[50]  Guang-Can Guo,et al.  PREVENTION OF DISSIPATION WITH TWO PARTICLES , 1998 .

[51]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[52]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[53]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[54]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[55]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[56]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[57]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[58]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[59]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .

[60]  C. Savage,et al.  Steady-state quantum statistics of a non-Markovian atom laser , 1999, cond-mat/9907023.

[61]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[62]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[63]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[64]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[65]  R J Schoelkopf,et al.  Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.

[66]  Patrice E. A. Turchi,et al.  Decoherence and its implications in quantum computation and information transfer , 2001 .

[67]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[68]  M. Troyer,et al.  Topologically protected quantum bits using Josephson junction arrays , 2001, Nature.

[69]  Jinhyoung Lee,et al.  Self-consistent non-Markovian theory of a quantum-state evolution for quantum-information processing , 2001, quant-ph/0105065.

[70]  Samuel J. Lomonaco,et al.  Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium: American Mathematical Challenge Society, Short Course, January 17-18, 2000, Washington, DC , 2002 .

[71]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[72]  E. Knill,et al.  Introduction to Quantum Error Correction , 2002 .

[73]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[74]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[75]  G. J. Milburn,et al.  Measuring the decoherence rate in a semiconductor charge qubit , 2003 .

[76]  Simon C. Benjamin,et al.  Quantum error correction in globally controlled arrays , 2003 .

[77]  A. Steane Quantum computing and error correction , 2003, quant-ph/0304016.

[78]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[79]  Timothy F. Havel,et al.  Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points , 2003 .

[80]  K. Wódkiewicz,et al.  Quantum Markov channels for qubits , 2002, quant-ph/0211001.

[81]  A. Chatterjee,et al.  Introduction to Quantum Computation , 2003 .

[82]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[83]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[84]  S. Aaronson,et al.  Improved simulation of stabilizer circuits (14 pages) , 2004 .

[85]  S D Bartlett,et al.  Measuring a photonic qubit without destroying it. , 2004, Physical review letters.

[86]  David P. DiVincenzo,et al.  Multilevel quantum description of decoherence in superconducting qubits , 2004 .

[87]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[88]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[89]  A. Greentree,et al.  Analysis and Geometric Optimization of Single Electron Transistors for Read-Out in Solid-State Quantum Computing , 2005, cond-mat/0501437.

[90]  Andrew M. Steane,et al.  Fault-tolerant logical gate networks for Calderbank-Shor-Steane codes , 2003, quant-ph/0311014.

[91]  Mark Oskin,et al.  An Evaluation Framework and Instruction Set Architecture for Ion-Trap Based Quantum Micro-Architectures , 2005, ISCA 2005.

[92]  Aram W. Harrow,et al.  Erratum: Arbitrarily accurate composite pulse sequences [Phys. Rev. A 70, 052318 (2004)] , 2005 .

[93]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[94]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[95]  Austin G. Fowler Towards Large-Scale Quantum Computation , 2005 .

[96]  Daniel A. Lidar,et al.  Universal Leakage Elimination , 2004, quant-ph/0409049.

[97]  K. Birgitta Whaley,et al.  Quantum error correction of a qubit loss in an addressable atomic system , 2005 .

[98]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[99]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[100]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[101]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[102]  Tommaso Toffoli,et al.  Bicontinuous extensions of invertible combinatorial functions , 1981, Mathematical systems theory.

[103]  Alexei Gilchrist,et al.  Loss-tolerant optical qubits. , 2005, Physical review letters.

[104]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[105]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[106]  P.O. Boykin,et al.  Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication , 2006, IEEE Transactions on Nanotechnology.

[107]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[108]  Kae Nemoto,et al.  Quantum error correction via robust probe modes , 2006 .

[109]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[110]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[111]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[112]  Panos Aliferis Level Reduction and the Quantum Threshold Theorem , 2007 .

[113]  Hector Bombin,et al.  Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .

[114]  L. Hollenberg,et al.  Subspace confinement: how good is your qubit? , 2007, quant-ph/0702123.

[115]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[116]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[117]  A. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2007, cond-mat/0702620.

[118]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[119]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[120]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[121]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[122]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[123]  M. A. Martin-Delgado,et al.  Statistical mechanical models and topological color codes , 2007, 0711.0468.

[124]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[125]  Andrew M. Steane,et al.  Fast fault-tolerant filtering of quantum codewords , 2008 .

[126]  S. J. Devitt,et al.  Asymmetric quantum error correction via code conversion , 2007, 0708.3969.

[127]  Austin G. Fowler,et al.  Universal fault tolerant quantum computation on bilinear nearest neighbor arrays , 2008, Quantum Inf. Comput..

[128]  Samuel L. Braunstein,et al.  Quantum error correction beyond qubits , 2008, 0811.3734.

[129]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[130]  Peter van Loock,et al.  A note on quantum error correction with continuous variables , 2008, 0811.3616.

[131]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[132]  Simon J. Devitt,et al.  High Performance Quantum Computing , 2008, 0810.2444.

[133]  Quantum Self-Correcting Stabilizer Codes , 2008, 0810.3557.

[134]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[135]  John Preskill,et al.  Accuracy threshold for postselected quantum computation , 2007, Quantum Inf. Comput..

[136]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[137]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[138]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[139]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[140]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[141]  D. James,et al.  Scalable, high-speed measurement-based quantum computer using trapped ions. , 2008, Physical review letters.

[142]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[143]  Jonathan A. Jones Composite pulses in NMR quantum computation , 2009, 0906.4719.

[144]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[145]  Austin G. Fowler,et al.  Topological cluster state quantum computing , 2008, Quantum Inf. Comput..

[146]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[147]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[148]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[149]  Helmut G. Katzgraber,et al.  Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group , 2009, 0910.0573.

[150]  R. V. Meter,et al.  A Layered Architecture for Quantum Computing Using Quantum Dots , 2010 .

[151]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[152]  Wooi Ping Hew,et al.  A three-phase five-level inverter for DTC drives application , 2011, IEICE Electron. Express.

[153]  H. Bombin Clifford gates by code deformation , 2010, 1006.5260.

[154]  Masahide Sasaki,et al.  Quantum information technology , 2011 .

[155]  Ben Reichardt,et al.  Fault-tolerant ancilla preparation and noise threshold lower bounds for the 23-qubit Golay code , 2011, Quantum Inf. Comput..

[156]  Helmut G. Katzgraber,et al.  Optimal error correction in topological subsystem codes , 2012, 1204.1838.

[157]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[158]  A. Fowler Low-overhead surface code logical H , 2012 .

[159]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[160]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[161]  Austin G. Fowler,et al.  Erratum: High-threshold universal quantum computation on the surface code [Phys. Rev. A 80, 052312 (2009)] , 2013 .

[162]  L. B. Ioffe,et al.  Topologically protected quantum bits from Josephson junction arrays , 2022 .