Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins

[1]  E. Glass,et al.  Transfection, expression, and DNA sequence of a gene encoding a BoLA-A11 antigen , 1995, Immunogenetics.

[2]  M. Campo,et al.  E5 transforming proteins of papillomaviruses do not disturb the activity of the vacuolar H(+)-ATPase. , 2001, The Journal of general virology.

[3]  S. Jacobson,et al.  Free Major Histocompatibility Complex Class I Heavy Chain Is Preferentially Targeted for Degradation by Human T-Cell Leukemia/Lymphotropic Virus Type 1 p12I Protein , 2001, Journal of Virology.

[4]  Y. Tsao,et al.  The Expression of HPV-16 E5 Protein in Squamous Neoplastic Changes in the Uterine Cervix , 2001, Journal of Biomedical Science.

[5]  D. McCance,et al.  The human papillomavirus type 16 E5 protein alters vacuolar H(+)-ATPase function and stability in Saccharomyces cerevisiae. , 2001, Virology.

[6]  B. Deurs,et al.  The HPV16 E5 oncogene inhibits endocytic trafficking , 2000, Oncogene.

[7]  G. Blair,et al.  Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins , 2000, Oncogene.

[8]  P. Stern,et al.  Multiple mechanisms underlie HLA dysregulation in cervical cancer. , 2000, Tissue antigens.

[9]  J. Hancock,et al.  H-ras but Not K-ras Traffics to the Plasma Membrane through the Exocytic Pathway , 2000, Molecular and Cellular Biology.

[10]  V. O’Brien,et al.  Binding of bovine papillomavirus type 4 E8 to ductin (16K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. , 2000, The Journal of general virology.

[11]  R. Schlegel,et al.  E5 Oncoprotein Mutants Activate Phosphoinositide 3-Kinase Independently of Platelet-derived Growth Factor Receptor Activation* , 2000, The Journal of Biological Chemistry.

[12]  S. Grinstein,et al.  Golgi Alkalinization by the Papillomavirus E5 Oncoprotein , 2000, The Journal of cell biology.

[13]  B. Steinberg,et al.  Altered Expression of TAP-1 and Major Histocompatibility Complex Class I in Laryngeal Papillomatosis: Correlation of TAP-1 with Disease , 2000, Clinical Diagnostic Laboratory Immunology.

[14]  J. Dennis,et al.  Glycoprotein glycosylation and cancer progression. , 1999, Biochimica et biophysica acta.

[15]  P. Cresswell,et al.  The nature of the MHC class I peptide loading complex , 1999, Immunological reviews.

[16]  V. Kinzel,et al.  The human papillomavirus type 16 E5 protein modulates phospholipase C-γ-1 activity and phosphatidyl inositol turnover in mouse fibroblasts , 1999, Oncogene.

[17]  R L Stanfield,et al.  Roles for glycosylation of cell surface receptors involved in cellular immune recognition. , 1999, Journal of molecular biology.

[18]  T. Morimoto,et al.  Endomembrane Trafficking of Ras The CAAX Motif Targets Proteins to the ER and Golgi , 1999, Cell.

[19]  I. Frazer,et al.  Potential strategies utilised by papillomavirus to evade host immunity , 1999, Immunological reviews.

[20]  G. Grindlay,et al.  A mutational analysis of the transforming functions of the E8 protein of bovine papillomavirus type 4. , 1999, Virology.

[21]  J. Yewdell,et al.  Mechanisms of viral interference with MHC class I antigen processing and presentation. , 1999, Annual review of cell and developmental biology.

[22]  M. Campo,et al.  BPV-4 E8 transforms NIH3T3 cells, up-regulates cyclin A and cyclin A-associated kinase activity and de-regulates expression of the cdk inhibitor p27Kip1 , 1998, Oncogene.

[23]  G. Warren,et al.  Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae , 1998, The EMBO journal.

[24]  M. Greenberg,et al.  The SH3 domain‐binding surface and an acidic motif in HIV‐1 Nef regulate trafficking of class I MHC complexes , 1998, The EMBO journal.

[25]  F. Brodsky,et al.  Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. , 1998, Immunity.

[26]  M. Kitagawa,et al.  Newly Synthesized Rho A, Not Ras, Is Isoprenylated and Translocated to Membranes Coincident with Progression of the G1 to S Phase of Growth-stimulated Rat FRTL-5 Cells* , 1998, The Journal of Biological Chemistry.

[27]  C. Meijer,et al.  Specific HLA class I down-regulation is an early event in cervical dysplasia associated with clinical progression , 1998, The Lancet.

[28]  L. Scobie,et al.  Viral proteins of bovine papillomavirus type 4 during the development of alimentary canal tumours. , 1997, Veterinary journal.

[29]  B. Seliger,et al.  TAP off--tumors on. , 1997, Immunology today.

[30]  J. Altman,et al.  Stability of empty and peptide-loaded class II major histocompatibility complex molecules at neutral and endosomal pH: comparison to class I proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Campo,et al.  The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts , 1996, Journal of virology.

[32]  J. E. V. van Leeuwen,et al.  Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Kahn,et al.  Mammalian Cdc42 Is a Brefeldin A-sensitive Component of the Golgi Apparatus* , 1996, The Journal of Biological Chemistry.

[34]  M. Kubbutat,et al.  Role of E6 and E7 oncoproteins in HPV-induced anogenital malignancies , 1996 .

[35]  W. Davis,et al.  Ruminant cluster CD71. , 1996, Veterinary Immunology and Immunopathology.

[36]  H. Ploegh,et al.  Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment , 1995, The Journal of cell biology.

[37]  G. Matlashewski,et al.  Effect of human papillomavirus type 16 oncogenes on MAP kinase activity , 1995, Journal of virology.

[38]  P. Stern,et al.  Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression. , 1995, British Journal of Cancer.

[39]  J. Kartenbeck,et al.  Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line , 1995, Journal of virology.

[40]  D. McCance,et al.  The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes , 1995, Journal of virology.

[41]  C. Meijer,et al.  Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas , 1994, The Journal of experimental medicine.

[42]  R. Schlegel,et al.  The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase , 1993, Journal of virology.

[43]  R. Schlegel,et al.  The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein , 1993, Journal of virology.

[44]  D. McCance,et al.  The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes , 1993, Journal of virology.

[45]  W. Pennie,et al.  Analysis of the transforming functions of bovine papillomavirus type 4. , 1993, Virology.

[46]  N. Jareborg,et al.  Localization of bovine papillomavirus type 1 E5 protein to transformed basal keratinocytes and permissive differentiated cells in fibropapilloma tissue. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Andrésson,et al.  Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases , 1991, Nature.

[48]  D. DiMaio,et al.  Activation of the platelet‐derived growth factor receptor by the bovine papillomavirus E5 transforming protein. , 1991, The EMBO journal.

[49]  W. Pennie,et al.  The B subgroup bovine papillomaviruses lack an identifiable E6 open reading frame , 1991, Molecular carcinogenesis.

[50]  R. Schlegel,et al.  The E5 oncoprotein target: A 16‐kDa channel‐forming protein with diverse functions , 1991, Molecular carcinogenesis.

[51]  A. Teale,et al.  Biochemical characterization of activation-associated bovine class I major histocompatibility complex antigens. , 2009, Animal genetics.

[52]  D. Lowy,et al.  The bovine papillomavirus E5 transforming protein can stimulate the transforming activity of EGF and CSF-1 receptors , 1989, Cell.

[53]  M. Willingham,et al.  The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. , 1989, Virology.

[54]  D. Baltimore,et al.  Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus , 1983, Cell.