Nanostructures and nanostructured substrates for surface—enhanced Raman scattering (SERS)

We review the performance of various nanoscaled structures needed to support the propagation of the surface plasmons responsible for surface-enhanced Raman scattering (SERS), and assess the potential for the optimisation of the compromise between enhancement and reproducibility that they provide, and hence their utility for relevant applications. We divide these nanostructures into those comprising structured arrays of discrete nanoparticles in two or three dimensions, and those comprising structured or regularly patterned surfaces in two or three dimensions. The most promising in terms of this compromise are those that involve the tethering of functionalised metal nanoparticles to surfaces. They are not only reproducible, but the functionalisation provides a measure of selectivity to relevant target analytes that the majority of SERS applications require. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  S. Bell,et al.  Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). , 2004, The Analyst.

[2]  R. Young,et al.  Single-walled carbon nanotube networks decorated with silver nanoparticles : a novel graded SERS substrate , 2007 .

[3]  Lehui Lu,et al.  Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy , 2005 .

[4]  Thomas E. Mallouk,et al.  Orthogonal Self‐Assembly on Colloidal Gold‐Platinum Nanorods , 1999 .

[5]  S. Aștilean,et al.  Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles , 2006 .

[6]  M. Pileni,et al.  Nanosized Particles Made in Colloidal Assemblies , 1997 .

[7]  Younan Xia,et al.  Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. , 2004, Journal of the American Chemical Society.

[8]  Simon J. Henley,et al.  Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy , 2007 .

[9]  M. Ishikawa,et al.  Metal nanostructures with single molecule sensitivity in surface enhanced Raman scattering , 2004 .

[10]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[11]  M. Muniz-Miranda,et al.  AFM and micro-Raman investigation on filters coated with silver colloidal nanoparticles , 2004 .

[12]  Peter M. Fredericks,et al.  Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface , 1999 .

[13]  P. Etchegoin,et al.  SERS in PAH-Os and gold nanoparticle self-assembled multilayers. , 2005, The Journal of chemical physics.

[14]  Alistair Elfick,et al.  Heating effects in tip-enhanced optical microscopy. , 2006, Optics express.

[15]  A. Hohenau,et al.  Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. , 2004, The Journal of chemical physics.

[16]  T. Kodama,et al.  Surface enhanced Raman scattering imaging of carbon onions with a silver nanoparticle immobilized tip , 2006 .

[17]  K. Soo,et al.  Deposition method for preparing SERS-active gold nanoparticle substrates. , 2005, Analytical chemistry.

[18]  A. Cass,et al.  A note on distance dependence in surface enhanced Raman spectroscopy , 2006 .

[19]  E. Wang,et al.  An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[21]  Richard J C Brown,et al.  Developments in accurate and traceable chemical measurements. , 2007, Chemical Society reviews.

[22]  S. Aștilean,et al.  Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy , 2005 .

[23]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[24]  C. Yardin,et al.  Analytical Methodologies with Very Low Blank Levels: Implications for Practical and Empirical Evaluations of the Limit of Detection , 2006 .

[25]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[26]  A. Bond,et al.  Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation , 2007 .

[27]  Zhichuan J. Xu,et al.  From aqueous to organic: A step-by-step strategy for shape evolution of gold nanoparticles , 2005 .

[28]  M. Pileni,et al.  Optical absorption spectra of arrays of metal particles from cluster calculations: cluster size and shape effects , 1999 .

[29]  J. Hafner,et al.  Symmetry breaking in individual plasmonic nanoparticles. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Baumberg,et al.  Optical properties of nanostructured metal films. , 2004, Faraday discussions.

[31]  Jeremy J. Baumberg,et al.  Electrochemical SERS at a structured gold surface , 2005 .

[32]  M. Ratner,et al.  Multipolar excitation in triangular nanoprisms. , 2005, The Journal of chemical physics.

[33]  Mino Green,et al.  SERS platforms for high density DNA arrays. , 2006, Faraday discussions.

[34]  Richard J.C. Brown,et al.  Strategy to improve the reproducibility of colloidal SERS. , 2007 .

[35]  M. Natan,et al.  Surface enhanced Raman scattering. , 2006, Faraday discussions.

[36]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[37]  Gerhard Ertl,et al.  Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces , 2002 .

[38]  M. Brust,et al.  Novel gold‐dithiol nano‐networks with non‐metallic electronic properties , 1995 .

[39]  Hongxing Xu,et al.  Homogeneous surface-enhanced Raman scattering observed from self-assembled gold nanoparticle films deposited from the liquid-liquid interface , 2005 .

[40]  P. Etchegoin,et al.  Localized plasmon resonances in inhomogeneous metallic nanoclusters , 2004 .

[41]  Yu Chuan Liu,et al.  Strategy for obtaining improved surface-enhanced Raman scattering by combining electrochemical and plasmas technologies , 2005 .

[42]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[43]  Richard P. Van Duyne,et al.  An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection , 2003, SPIE Optics + Photonics.

[44]  B. Pettinger Tip-enhanced Raman spectroscopy (TERS) , 2006 .

[45]  Zhong-Qun Tian,et al.  Surface-enhanced Raman spectroscopy: advancements and applications , 2005 .

[46]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[47]  M. Groza,et al.  Surface-Enhanced Raman Spectroscopy Using Silver-Coated Porous Glass-Ceramic Substrates , 2005, Applied spectroscopy.

[48]  Mari Yamamoto,et al.  Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold(I) thiolate in the absence or presence of amines , 2005 .

[49]  Kathy L. Rowlen,et al.  Quantitative Comparison of Five SERS Substrates: Sensitivity and Limit of Detection , 1997 .

[50]  M. Kerker Effect of optical constants on calculated values of surface-enhanced Raman scattering , 1985 .

[51]  N. Lala,et al.  Auto-deposition of gold on chemically modified polystyrene beads , 2005 .

[52]  Jinghong Li,et al.  Interfacial design and functionization on metal electrodes through self-assembled monolayers , 2006 .

[53]  C. E. Vallet,et al.  Sputtered gold films for surface-enhanced Raman scattering , 1997 .

[54]  Jian Zhu,et al.  Simulation of the surrounding medium controlled local field enhancement for silver nanorods , 2006 .

[55]  Mikael Käll,et al.  Plasmonic sensing characteristics of single nanometric holes. , 2005, Nano letters.

[56]  Martin J T Milton,et al.  Analytical techniques for trace element analysis: an overview , 2005 .

[57]  David J. Pena,et al.  Metal Films Prepared by Stepwise Assembly. 2. Construction and Characterization of Colloidal Au and Ag Multilayers , 2000 .

[58]  Mino Green,et al.  SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System , 2003 .

[59]  W. Cai,et al.  Ultrasonic solvent induced morphological change of Au colloids , 2004 .

[60]  C. Haynes,et al.  Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces , 2001 .

[61]  R. G. Freeman,et al.  Size selection of colloidal gold aggregates by filtration: effect on surface‐enhanced Raman scattering intensities , 1999 .

[62]  A. Kudelski,et al.  Place-exchange reactions of thiols on electrochemically roughened SERS-active silver , 2005 .

[63]  T. Russell,et al.  Using a ferrocenylsilane-based block copolymer as a template to produce nanotextured Ag surfaces: uniformly enhanced surface enhanced Raman scattering active substrates , 2006 .

[64]  Wei Song,et al.  Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering , 2006 .

[65]  Richard J.C. Brown,et al.  Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS. , 2006, Faraday discussions.

[66]  Duncan Graham,et al.  DNA detection by surface enhanced resonance Raman scattering (SERRS). , 2005, The Analyst.

[67]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[69]  John F. Watts,et al.  Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates , 2003 .

[70]  W. Ho,et al.  Single molecule imaging and vibrational spectroscopy with a chemically modified tip of a scanning tunneling microscope. , 2001, Physical review letters.

[71]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[72]  Hua-Zhong Yu,et al.  Two-dimensional surface enhanced Raman mapping of differently prepared gold substrates with an azobenzene self-assembled monolayer , 1997 .

[73]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[74]  Masayuki Nogami,et al.  Self-assembled silver nanochains for surface-enhanced Raman scattering. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[75]  R. G. Freeman,et al.  Ag-Clad Au Nanoparticles: Novel Aggregation, Optical, and Surface-Enhanced Raman Scattering Properties , 1996 .

[76]  Jin-Kyu Lee,et al.  Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering{ , 2006 .

[77]  Aine M. Whelan,et al.  A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles , 2007 .

[78]  M. Natan,et al.  Stepwise Construction of Conductive Au Colloid Multilayers from Solution , 1997 .

[79]  T. Wadayama,et al.  Surface-enhanced Raman spectral study of Au nano-particles/alkanethiol self-assembled monolayers/Au(1 1 1 ) heterostructures , 2006 .

[80]  Robert C. Maher,et al.  New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS) , 2003 .

[81]  George Chumanov,et al.  Application of surface-enhanced Raman spectroscopy to biological systems , 1991 .

[82]  Michael J. Natan,et al.  Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture , 1996 .

[83]  L. Berlouis,et al.  Reflectance and SERS from an ordered array of gold nanorods , 2007 .

[84]  Ricardo Aroca,et al.  Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection , 2004 .

[85]  Chanel K. Yee,et al.  Novel One-Phase Synthesis of Thiol-Functionalized Gold, Palladium, and Iridium Nanoparticles Using Superhydride , 1999 .

[86]  R. J. Brown,et al.  Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. , 2004, The Journal of chemical physics.

[87]  Richard J.C. Brown,et al.  Electromagnetic modelling of Raman enhancement from nanoscale structures as a means to predict the efficacy of SERS substrates , 2007 .

[88]  Orlin D. Velev,et al.  Controlled assembly of SERS substrates templated by colloidal crystal films , 2006 .

[89]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[90]  P. J. Halfpenny,et al.  Characterization of Novel Ag on TiO2 Films for Surface-Enhanced Raman Scattering , 2004, Applied spectroscopy.

[91]  N. Turro,et al.  Metal Acetylacetonates as General Precursors for the Synthesis of Early Transition Metal Oxide Nanomaterials , 2007 .

[92]  G. Schatz Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates , 2001 .

[93]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[94]  De‐Yin Wu,et al.  Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures , 2002 .

[95]  Hongshui Wang,et al.  Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. , 2006, Journal of colloid and interface science.

[96]  Steven D. Christesen,et al.  On-Line Spectroscopic Characterization of Sodium Cyanide with Nanostructured Gold Surface-Enhanced Raman Spectroscopy Substrates , 2002 .

[97]  Zhong-Qun Tian,et al.  A complementary study of surface-enhanced Raman scattering and metal nanorod arrays , 2000 .

[98]  Y. Ozaki,et al.  Self-assembled metal colloid films: two approaches for preparing new SERS active substrates. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[99]  R. Schlögl,et al.  Gold-nanoparticle/organic linker films: self-assembly, electronic and structural characterisation, composition and vapour sensitivity. , 2004, Faraday discussions.

[100]  T. Vo‐Dinh,et al.  A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application , 2005 .

[101]  W. C. Bell,et al.  Preparation and Characterization of Nanoscale Silver Colloids by Two Novel Synthetic Routes , 2001 .

[102]  R. Aroca Surface-Enhanced Vibrational Spectroscopy: Aroca/Surface-Enhanced Vibrational Spectroscopy , 2007 .

[103]  Steven D. Christesen,et al.  Role of the Micro- and Nanostructure in the Performance of Surface-Enhanced Raman Scattering Substrates Assembled from Gold Nanoparticles , 2005, Applied spectroscopy.

[104]  R. J. Brown,et al.  Resonance contributions to anti-Stokes/Stokes ratios under surface enhanced Raman scattering conditions. , 2005, The Journal of chemical physics.

[105]  R. J. Brown,et al.  Physics of single molecule fluctuations in surface enhanced Raman spectroscopy active liquids. , 2004, The Journal of chemical physics.

[106]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[107]  Bing Zhao,et al.  Surface-enhanced Raman activity and stability study of silver films prepared by reduction of Ag+ ions in N,N-dimethylformamide. , 2005, Journal of colloid and interface science.

[108]  Yu. A. Koksharov,et al.  Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures. , 2006, Advances in colloid and interface science.

[109]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[110]  R. V. Duyne,et al.  Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass , 1993 .

[111]  M. Moskovits,et al.  Engineering nanostructures for giant optical fields , 2004 .

[112]  Gary A. Baker,et al.  Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis , 2005, Analytical and bioanalytical chemistry.

[113]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[114]  N. Lala,et al.  Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. , 2005, Journal of colloid and interface science.

[115]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[116]  A. Frenkel,et al.  Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. , 2005, The Journal of chemical physics.

[117]  J. Baumberg,et al.  Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. , 2005, Physical review letters.

[118]  M. J. Weaver Surface-enhanced Raman spectroscopy as a versatilein situ probe of chemisorption in catalytic electrochemical and gaseous environments , 2002 .

[119]  Dan J.L. Brett,et al.  Electrochemical Study of Biotin-Modified Self-Assembled Monolayers: Recommendations for Robust Preparation , 2006, TheScientificWorldJournal.

[120]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[121]  Yukihiro Ozaki,et al.  Aggregation of silver particles trapped at an air-water interface for preparing new SERS active substrates , 2002 .

[122]  A. Otto,et al.  Surface enhanced Raman scattering , 1983 .

[123]  S. Anderson,et al.  Vibrational mode and collision energy effects on reaction of H2CO+ with C2D4. , 2004, The Journal of chemical physics.

[124]  Hongxing Xu,et al.  Field enhancement and molecular response in surface‐enhanced Raman scattering and fluorescence spectroscopy , 2005 .

[125]  R. Álvarez-Puebla,et al.  Surface-enhanced Raman scattering on colloidal nanostructures. , 2005, Advances in colloid and interface science.