Null Controllability of a Parabolic System with a Cubic Coupling Term

We consider a system of two parabolic equations with a forcing term present in one equation and a cubic coupling term in the other one. We prove that the system is locally null controllable.

[1]  D. Kinderlehrer,et al.  A ug 2 00 8 Contraction in L 1 and large time behavior for a system arising in chemical reactions and molecular motors , 2008 .

[2]  Controllability of the Ginzburg–Landau equation , 2008 .

[3]  Oleg Yu. Imanuvilov,et al.  Controllability of Evolution equations , 1996 .

[4]  Luz de Teresa,et al.  Insensitizing controls for a semilinear heat equation , 2000 .

[5]  Sergio Guerrero,et al.  Null Controllability of Some Systems of Two Parabolic Equations with One Control Force , 2007, SIAM J. Control. Optim..

[6]  On the boundary controllability of non-scalar parabolic systems , 2009 .

[7]  Sergio Guerrero,et al.  Some Controllability Results forthe N-Dimensional Navier--Stokes and Boussinesq systems with N-1 scalar controls , 2006, SIAM J. Control. Optim..

[8]  Assia Benabdallah,et al.  Inverse problem for a parabolic system with two components by measurements of one component , 2008, 0809.1542.

[9]  Farid Ammar Khodja,et al.  Null-controllability of some reaction–diffusion systems with one control force , 2006 .

[10]  Viorel Barbu Local controllability of the phase field system , 2002 .

[11]  Benabdallah Assia,et al.  Controllability for a class of reaction-diffusion systems: generalized Kalman's condition , 2007 .

[12]  Jean-Michel Coron,et al.  Null controllability of the N-dimensional Stokes system with N−1 scalar controls , 2009 .

[13]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[14]  Assia Benabdallah,et al.  Partial Differential Equations / Optimal Control Controllability for a class of reaction – diffusion systems : the generalized Kalman ’ s condition , 2007 .

[15]  Xiaoyu Fu,et al.  A weighted identity for partial differential operators of second order and its applications , 2006 .

[16]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[17]  Sergio Guerrero Controllability of systems of Stokes equations with one control force: existence of insensitizing controls , 2007 .

[18]  Assia Benabdallah,et al.  A GENERALIZATION OF THE KALMAN RANK CONDITION FOR TIME-DEPENDENT COUPLED LINEAR PARABOLIC SYSTEMS , 2009 .

[19]  Assia Benabdallah,et al.  A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems , 2009 .

[20]  S. Singh Nonlinear Functional Analysis and Its Applications , 1986 .

[21]  L. Rosier,et al.  Null controllability of the complex Ginzburg-Landau equation Contrôlabilité à zéro de l'équation de Ginzburg-Landau complexe , 2009 .

[22]  J. Coron Control and Nonlinearity , 2007 .

[23]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[24]  Manuel González-Burgos,et al.  Controllability results for some nonlinear coupled parabolic systems by one control force , 2006, Asymptot. Anal..

[25]  R. Eymard,et al.  A reaction–diffusion system with fast reversible reaction , 2003, 0808.0251.

[26]  Farid Ammar Khodja,et al.  Null-controllability of some systems of parabolic type by one control force , 2005 .

[27]  K. Deimling Nonlinear functional analysis , 1985 .

[28]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[29]  CONTRACTION IN L 1 FOR A SYSTEM ARISING IN CHEMICAL REACTIONS AND MOLECULAR MOTORS , 2009 .

[30]  Péter Érdi,et al.  Mathematical models of chemical reactions , 1989 .