Microbial dynamics and key sensory traits of laboratory-scale co-fermented green olives (Olea europaea L. cv. Ascolana tenera) and sea fennel (Crithmum maritimum L.)

[1]  Luca Belleggia,et al.  Exploitation of sea fennel (Crithmum maritimum L.) for manufacturing of novel high-value fermented preserves , 2021 .

[2]  Lanjuan Li,et al.  Pediococcus pentosaceus, a future additive or probiotic candidate , 2021, Microbial Cell Factories.

[3]  Charis M. Galanakis Functionality of Food Components and Emerging Technologies , 2021, Foods.

[4]  Luca Belleggia,et al.  The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing , 2020, Foods.

[5]  H. Falentin,et al.  Deciphering Microbial Community Dynamics and Biochemical Changes During Nyons Black Olive Natural Fermentations , 2020, Frontiers in Microbiology.

[6]  F. Breidt,et al.  Manufacture of Traditionally Fermented Vegetable Products: Best Practice for Small Businesses and Retail Food Establishments , 2020 .

[7]  S. Behera,et al.  Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? , 2020 .

[8]  A. Corsetti,et al.  Table Olives More than a Fermented Food , 2020, Foods.

[9]  M. G. Fortina,et al.  A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains , 2020, Journal of applied microbiology.

[10]  R. Comunian,et al.  Technologies and Trends to Improve Table Olive Quality and Safety , 2018, Front. Microbiol..

[11]  P. Kotzekidou,et al.  Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives , 2018 .

[12]  Nai-yu Wang,et al.  Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. , 2017, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[13]  F. Remize,et al.  Why Are Weissella spp. Not Used as Commercial Starter Cultures for Food Fermentation , 2017 .

[14]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[15]  A. Kiritsakis,et al.  Table Olives: Processing, Nutritional, and Health Implications , 2017 .

[16]  M. Boban,et al.  Sea fennel (Crithmum maritimum L.): phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity , 2016, Journal of Food Science and Technology.

[17]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[18]  J. M. Rodríguez,et al.  PCR-DGGE assessment of the bacterial diversity in Spanish-style green table-olive fermentations. , 2015, International journal of food microbiology.

[19]  M. L. Clodoveo,et al.  Table Olives as Sources of Bioactive Compounds , 2015 .

[20]  F. Malcata,et al.  Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics , 2014 .

[21]  A. Hafidi,et al.  Chemical composition changes in four green olive cultivars during spontaneous fermentation , 2014 .

[22]  G. Nychas,et al.  Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. , 2014, Food microbiology.

[23]  D. Knorr,et al.  Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms. , 2014, International journal of food microbiology.

[24]  M. Kleerebezem,et al.  Production of aroma compounds in lactic fermentations. , 2014, Annual review of food science and technology.

[25]  F. De Filippis,et al.  NaOH-Debittering Induces Changes in Bacterial Ecology during Table Olives Fermentation , 2013, PloS one.

[26]  A. Bevilacqua,et al.  Modelling the survival of Enterobacter cloacae in a model olive cover brine solution , 2013 .

[27]  B. Lanza,et al.  Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity. , 2013, Food microbiology.

[28]  L. Cocolin,et al.  Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential , 2013 .

[29]  F. N. Arroyo-López,et al.  Yeasts in table olive processing: desirable or spoilage microorganisms? , 2012, International journal of food microbiology.

[30]  F. Romeo,et al.  Diversity of bacterial population of table olives assessed by PCR-DGGE analysis. , 2012, Food microbiology.

[31]  N. Rozès,et al.  Lactic acid bacteria from fermented table olives. , 2012, Food microbiology.

[32]  R. Tofalo,et al.  Application of starter cultures to table olive fermentation: an overview on the experimental studies , 2012, Front. Microbio..

[33]  L. Cocolin,et al.  Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches , 2012, Front. Microbio..

[34]  J. Carballo The Role of Fermentation Reactions in the Generation of Flavor and Aroma of Foods , 2012 .

[35]  L. Ouoba,et al.  Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures. , 2010, Journal of food science.

[36]  F. Valerio,et al.  Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. , 2010, International journal of food microbiology.

[37]  A. Castro,et al.  Table Olives: Varieties and Variations , 2010 .

[38]  A. Bevilacqua,et al.  Characterization and implications of Enterobacter cloacae strains, isolated from Italian table olives "Bella di Cerignola". , 2010, Journal of food science.

[39]  F. N. Arroyo-López,et al.  Role of yeasts in table olive production. , 2008, International journal of food microbiology.

[40]  N. Rozès,et al.  Microbial population dynamics during the processing of Arbequina table olives , 2008 .

[41]  N. Sabatini,et al.  Volatile compounds in table olives (Olea Europaea L., Nocellara del Belice cultivar) , 2008 .

[42]  P. Poltronieri,et al.  DNA Arrays and Membrane Hybridization Methods for Screening of Six Lactobacillus Species Common in Food Products , 2008 .

[43]  Efstathios Z Panagou,et al.  Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives. , 2006, Food microbiology.

[44]  C. Kado Erwinia and Related Genera , 2006 .

[45]  V. Marsilio,et al.  Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing , 2005 .

[46]  A. Castro,et al.  Comparative study on chemical changes in olive juice and brine during green olive fermentation. , 2000, Journal of agricultural and food chemistry.

[47]  F. Napolitano,et al.  Composition and antibacterial activity of the essential oil from Crithmum maritimum L. (Apiaceae) growing wild in Turkey , 2000 .

[48]  M. Brenes,et al.  The effects of acidification and temperature during washing of Spanish-style green olives on the fermentation process. , 1995 .

[49]  V. Marshall,et al.  Effect of sodium chloride on metabolism of two strains of Lactobacillus plantarum isolated from fermenting green olives , 1993 .

[50]  L. Zaika,et al.  Inhibition of Lactic Acid Bacteria by Herbs , 1983 .

[51]  G. Balatsouras,et al.  Effects of Fermentation and Its Control on the Sensory Characteristics of Conservolea Variety Green Olives , 1983, Applied and environmental microbiology.

[52]  D. R. Peryam,et al.  Hedonic scale method of measuring food preferences. , 1957 .