Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring

[1]  Bart Baesens,et al.  Minerva: Sequential Covering for Rule Extraction , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Pragya Agarwal,et al.  Self-Organising Maps , 2008 .

[3]  J. Diederich Rule Extraction from Support Vector Machines , 2008, Studies in Computational Intelligence.

[4]  Marina Velikova,et al.  Solving Partially Monotone Problems with Neural Networks , 2007 .

[5]  B. Baesens,et al.  Comprehensible Credit Scoring Models Using Rule Extraction from Support Vector Machines , 2007, Eur. J. Oper. Res..

[6]  Monique Snoeck,et al.  Classification With Ant Colony Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[7]  Bart Baesens,et al.  Forecasting and analyzing insurance companies' ratings , 2007 .

[8]  Bart Baesens,et al.  Risk Management and Regulatory Compliance: A Data Mining Framework Based on Neural Network Rule Extraction , 2006, ICIS.

[9]  Johan A. K. Suykens,et al.  A process model to develop an internal rating system: Sovereign credit ratings , 2006, Decis. Support Syst..

[10]  Bart Baesens,et al.  Ant-Based Approach to the Knowledge Fusion Problem , 2006, ANTS Workshop.

[11]  Bart Baesens,et al.  ITER: An Algorithm for Predictive Regression Rule Extraction , 2006, DaWaK.

[12]  J. Suykens,et al.  Linear and Non-linear Credit Scoring by Combining Logistic Regression and Support Vector Machines , 2006 .

[13]  Bart Baesens,et al.  Country Corruption Analysis with Self Organizing Maps and Support Vector Machines , 2006, WISI.

[14]  S. Sandilya,et al.  Rule extraction from linear support vector machines , 2005, KDD '05.

[15]  Thomas G. Dietterich,et al.  Learning from Sparse Data by Exploiting Monotonicity Constraints , 2005, UAI.

[16]  Joachim Diederich,et al.  Eclectic Rule-Extraction from Support Vector Machines , 2005 .

[17]  Urszula Markowska-Kaczmar,et al.  Discovering the Mysteries of Neural Networks , 2004, Int. J. Hybrid Intell. Syst..

[18]  Marina Velikova,et al.  Decision trees for monotone price models , 2004, Comput. Manag. Sci..

[19]  Daniel Rivero,et al.  A New Approach to the Extraction of ANN Rules and to Their Generalization Capacity Through GP , 2004, Neural Computation.

[20]  A. J. Feelders,et al.  Pruning for Monotone Classification Trees , 2003, IDA.

[21]  Johan A. K. Suykens,et al.  Benchmarking state-of-the-art classification algorithms for credit scoring , 2003, J. Oper. Res. Soc..

[22]  Zhi-Hua Zhou,et al.  Extracting symbolic rules from trained neural network ensembles , 2003, AI Commun..

[23]  Bart Baesens,et al.  Using Neural Network Rule Extraction and Decision Tables for Credit - Risk Evaluation , 2003, Manag. Sci..

[24]  T. Joachims Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[25]  Tong Zhang An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods , 2001, AI Mag..

[26]  Michael V. Mannino,et al.  The cost-minimizing inverse classification problem: a genetic algorithm approach , 2000, Decis. Support Syst..

[27]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[28]  Chris Aldrich,et al.  ANN-DT: an algorithm for extraction of decision trees from artificial neural networks , 1999, IEEE Trans. Neural Networks.

[29]  Joydeep Ghosh,et al.  Symbolic Interpretation of Artificial Neural Networks , 1999, IEEE Trans. Knowl. Data Eng..

[30]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[31]  Timo Honkela,et al.  WEBSOM - Self-organizing maps of document collections , 1998, Neurocomputing.

[32]  Teuvo Kohonen,et al.  Visual Explorations in Finance , 1998 .

[33]  P. Brockett,et al.  Using Kohonen's Self-Organizing Feature Map to Uncover Automobile Bodily Injury Claims Fraud , 1998 .

[34]  Joseph Sill,et al.  Monotonic Networks , 1997, NIPS.

[35]  Joachim Diederich,et al.  Survey and critique of techniques for extracting rules from trained artificial neural networks , 1995, Knowl. Based Syst..

[36]  Mark W. Craven,et al.  Extracting Tree-Structured Representations of Trained Networks , 1995, NIPS.

[37]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[38]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[39]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[40]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[41]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[42]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[43]  Bart Baesens,et al.  Using Rule Extraction to Improve the Comprehensibility of Predictive Models , 2006 .

[44]  L. Niklasson,et al.  The Truth is in There : Rule Extraction from Opaque Models Using Genetic Programming , 2004 .

[45]  Fei Chen,et al.  LEARNING ACCURATE AND UNDERSTANDABLE RULES FROM SVM CLASSIFIERS , 2004 .

[46]  J. R. Quinlan Induction of decision trees , 2004, Machine Learning.

[47]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[48]  Arie Ben-David,et al.  Monotonicity maintenance in information-theoretic machine learning algorithms , 2004, Machine Learning.

[49]  Nahla H. Barakat,et al.  Learning-Based Rule-Extraction From Support Vector Machines: Performance On Benchmark Data Sets , 2004 .

[50]  Johan A. K. Suykens,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2004, Machine Learning.

[51]  Urszula Markowska-Kaczmar,et al.  Extraction of fuzzy rules from trained neural network using evolutionary algorithm , 2003, ESANN.

[52]  H. Daniels,et al.  Derivation of Monotone Decision Models from Non-Monotone Data , 2003 .

[53]  Urszula Markowska-Kaczmar,et al.  Rule Extraction from Trained Neural Network with Evolutionary Algorithms , 2003 .

[54]  Olcay Boz,et al.  Converting A Trained Neural Network To a Decision Tree DecText - Decision Tree Extractor , 2002, ICMLA.

[55]  Andreu Català,et al.  Rule extraction from support vector machines , 2002, ESANN.

[56]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[57]  W. R. Shankle,et al.  Acceptance by medical experts of rules generated by machine learning , 2001 .

[58]  M J Pazzani,et al.  Acceptance of Rules Generated by Machine Learning among Medical Experts , 2001, Methods of Information in Medicine.

[59]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[60]  O. Boz,et al.  Converting a trained neural network to a decision tree dectext - decision tree extractor , 2000 .

[61]  R. Quinlan,et al.  Decision tree discovery , 1999 .

[62]  Mark Craven,et al.  Rule Extraction: Where Do We Go from Here? , 1999 .

[63]  M. S. Brown,et al.  Support Vector Machine Classification of Microarray from Gene Expression Data , 1999 .

[64]  T. Kohonen,et al.  Visual Explorations in Finance with Self-Organizing Maps , 1998 .

[65]  Mark Craven,et al.  Extracting comprehensible models from trained neural networks , 1996 .

[66]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[67]  Franziska Wulf Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[68]  L. Breiman Classification and regression trees , 1983 .

[69]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[70]  Ryszard S. Michalski,et al.  On the Quasi-Minimal Solution of the General Covering Problem , 1969 .

[71]  K. Johana,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2022 .

[72]  I. Miyazaki,et al.  AND T , 2022 .

[73]  William Noble Grundy,et al.  Support Vector Machine Classi cation of Microarray Gene Expression Data , 2022 .