A Batch Learning Framework for Scalable Personalized Ranking

In designing personalized ranking algorithms, it is desirable to encourage a high precision at the top of the ranked list. Existing methods either seek a smooth convex surrogate for a non-smooth ranking metric or directly modify updating procedures to encourage top accuracy. In this work we point out that these methods do not scale well to a large-scale setting, and this is partly due to the inaccurate pointwise or pairwise rank estimation. We propose a new framework for personalized ranking. It uses batch-based rank estimators and smooth rank-sensitive loss functions. This new batch learning framework leads to more stable and accurate rank approximations compared to previous work. Moreover, it enables explicit use of parallel computation to speed up training. We conduct empirical evaluation on three item recommendation tasks. Our method shows consistent accuracy improvements over state-of-the-art methods. Additionally, we observe time efficiency advantages when data scale increases.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[3]  Jason Weston,et al.  Large scale image annotation: learning to rank with joint word-image embeddings , 2010, Machine Learning.

[4]  Martha Larson,et al.  RecSys Challenge 2016: Job Recommendations , 2016, RecSys.

[5]  Samy Bengio,et al.  Revisiting Distributed Synchronous SGD , 2016, ArXiv.

[6]  Qiang Wu,et al.  Adapting boosting for information retrieval measures , 2010, Information Retrieval.

[7]  Stephen E. Robertson,et al.  SoftRank: optimizing non-smooth rank metrics , 2008, WSDM '08.

[8]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[9]  Shivani Agarwal,et al.  The Infinite Push: A New Support Vector Ranking Algorithm that Directly Optimizes Accuracy at the Absolute Top of the List , 2011, SDM.

[10]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[11]  Stephen P. Boyd,et al.  Accuracy at the Top , 2012, NIPS.

[12]  Alexandros Karatzoglou,et al.  Session-based Recommendations with Recurrent Neural Networks , 2015, ICLR.

[13]  Tat-Seng Chua,et al.  Fast Matrix Factorization for Online Recommendation with Implicit Feedback , 2016, SIGIR.

[14]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[15]  Martha Larson,et al.  CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering , 2012, RecSys.

[16]  Chunyan Miao,et al.  Exploiting Geographical Neighborhood Characteristics for Location Recommendation , 2014, CIKM.

[17]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[18]  Yehuda Koren,et al.  Care to comment?: recommendations for commenting on news stories , 2012, WWW.

[19]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[20]  Brian D. Davison,et al.  Co-factorization machines: modeling user interests and predicting individual decisions in Twitter , 2013, WSDM.

[21]  Maciej Kula,et al.  Metadata Embeddings for User and Item Cold-start Recommendations , 2015, CBRecSys@RecSys.

[22]  Patrick Gallinari,et al.  Ranking with ordered weighted pairwise classification , 2009, ICML '09.

[23]  Michael J. Muller,et al.  Make new friends, but keep the old: recommending people on social networking sites , 2009, CHI.

[24]  Paul Covington,et al.  Deep Neural Networks for YouTube Recommendations , 2016, RecSys.

[25]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[26]  Steffen Rendle,et al.  Improving pairwise learning for item recommendation from implicit feedback , 2014, WSDM.

[27]  Quoc V. Le,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, Neural Information Processing Systems.

[28]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[29]  Weinan Zhang,et al.  LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates , 2016, CIKM.

[30]  Martha Larson,et al.  TFMAP: optimizing MAP for top-n context-aware recommendation , 2012, SIGIR '12.

[31]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.