Using sparsity information for iterative phase retrieval in x-ray propagation imaging.

For iterative phase retrieval algorithms in near field x-ray propagation imaging experiments with a single distance measurement, it is indispensable to have a strong constraint based on a priori information about the specimen; for example, information about the specimen's support. Recently, Loock and Plonka proposed to use the a priori information that the exit wave is sparsely represented in a certain directional representation system, a so-called shearlet system. In this work, we extend this approach to complex-valued signals by applying the new shearlet constraint to amplitude and phase separately. Further, we demonstrate its applicability to experimental data.

[1]  K. Nugent,et al.  Quantitative Phase Imaging Using Hard X Rays. , 1996, Physical review letters.

[2]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[3]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[4]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[5]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[6]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[7]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[8]  T. Gureyev Composite techniques for phase retrieval in the Fresnel region , 2003 .

[9]  Michael Sprung,et al.  Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction. , 2015, Journal of synchrotron radiation.

[10]  Simon Maretzke,et al.  A uniqueness result for propagation-based phase contrast imaging from a single measurement , 2014, 1409.4794.

[11]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[12]  Tim Salditt,et al.  Near-field ptychography using lateral and longitudinal shifts , 2015 .

[13]  T Salditt,et al.  X-ray holographic imaging of hydrated biological cells in solution. , 2015, Physical review letters.

[14]  P. Cloetens,et al.  Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region. , 2007, Optics letters.

[15]  M. Teague Deterministic phase retrieval: a Green’s function solution , 1983 .

[16]  Klaus Giewekemeyer,et al.  X-ray propagation microscopy of biological cells using waveguides as a quasipoint source , 2011 .

[17]  Gerlind Plonka,et al.  Phase retrieval for Fresnel measurements using a shearlet sparsity constraint , 2014 .

[18]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[19]  Wang-Q Lim,et al.  Nonseparable Shearlet Transform , 2013, IEEE Transactions on Image Processing.

[20]  Bruno Sixou,et al.  Nonlinear approaches for the single-distance phase retrieval problem involving regularizations with sparsity constraints. , 2013, Applied optics.

[21]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[22]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[23]  P. Cloetens,et al.  Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays , 1999 .

[24]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[25]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Wang-Q Lim,et al.  ShearLab 3D , 2014, 1402.5670.

[27]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[28]  R. Lewis,et al.  Medical phase contrast x-ray imaging: current status and future prospects. , 2004, Physics in medicine and biology.

[29]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[30]  P. Cloetens,et al.  Phase objects in synchrotron radiation hard x-ray imaging , 1996 .

[31]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[32]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[33]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[34]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[35]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.