VIBRATION-BASED MODEL-DEPENDENT DAMAGE (DELAMINATION) IDENTIFICATION AND HEALTH MONITORING FOR COMPOSITE STRUCTURES — A REVIEW

There are strong needs and requirements for on-line damage (delamination) detection and health-monitoring techniques on composite structures. Vibration-based model-dependent methods with piezoelectric sensor and actuator incorporated into composite structures offer a promising option to fulfil such requirements and needs. These methods utilize finite element analysis techniques, together with experimental results, to detect damage. They locate and estimate damage events by comparing dynamic responses between damaged and undamaged structures. According to the dynamic response parameters analyzed, these methods can be subdivided into modal analysis, frequency domain, time domain and impedance domain. Model-dependent methods are able to provide global and local damage information. They are cost-effective and are relatively easy to operate. However, there are still many challenges and obstacles before these methods can be implemented in practice.

[1]  Sathya Hanagud,et al.  Delamination detection using dynamic characteristics of composite plates , 1995 .

[2]  H. Luo,et al.  Dynamic Learning Rate Neural Network Training and Composite Structural Damage Detection , 1997 .

[3]  J. E. Grady,et al.  Free vibrations of delaminated beams , 1991 .

[4]  A. Paolozzi,et al.  Detection of Debonding Damage in a Composite Plate through Natural Frequency Variations , 1990 .

[5]  Jaewook Rhim,et al.  A neural network approach for damage detection and identification of structures , 1995 .

[6]  K. C. Park,et al.  Damage detection using experimentally measured mass and stiffness matrices , 1993 .

[7]  D. R. Sanders,et al.  Nondestructive evaluation of damage in composite structures using modal parameters , 1992 .

[8]  S. Hanagud,et al.  Delaminations in smart composite structures - A parametric study on vibrations , 1990 .

[9]  Daniel J. Inman,et al.  An experimentally validated damage detection theory in smart structures , 1996 .

[10]  D. Zimmerman,et al.  Structural damage detection using a minimum rank update theory , 1994 .

[11]  A. C. Okafor,et al.  Delamination Prediction in Composite Beams with Built-In Piezoelectric Devices Using Modal Analysis and Neural Network , 1996 .

[12]  Thomas G. Carne,et al.  Damage detection and health monitoring of operational structures , 1994 .

[13]  W. Tsai,et al.  Nondestructive Evaluation of Composite Structures Using System Identification Technique , 1988 .

[14]  George Z. Voyiadjis,et al.  Damage in composite materials , 1993 .

[15]  A. Ganino,et al.  Damage Detection Using Neural Networks: An Initial Experimental Study on Debonded Beams , 1994 .

[16]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[17]  P. M. Mujumdar,et al.  Flexural vibrations of beams with delaminations , 1988 .

[18]  J. Ko,et al.  Localization of damaged structural connections based on experimental modal and sensitivity analysis , 1998 .

[19]  Horn-Sen Tzou,et al.  Intelligent Structural Systems , 1992 .

[20]  Masoud Sanayei,et al.  Selection of noisy measurement locations for error reduction in static parameter identification , 1992 .

[21]  Robert D. Adams,et al.  A Vibration Technique for Non-Destructively Assessing the Integrity of Structures: , 1978 .

[22]  Jaycee H. Chung,et al.  DETECTING STRUCTURAL DAMAGE USING FREQUENCY RESPONSE FUNCTIONS , 1998 .

[23]  Harry H. Robertshaw,et al.  Attacking the damage identification problem , 1995, Smart Structures.

[24]  Cliff J. Lissenden,et al.  Damage Detection by Piezoelectric Patches in a Free Vibration Method , 1997 .

[25]  Peter Cawley,et al.  The impedance method of non-destructive inspection , 1984 .

[26]  C. M. Dakshina Moorthy,et al.  Modelling of laminates using a layerwise element with enhanced strains , 1998 .

[27]  Gerard C. Pardoen,et al.  Effect of Delamination on the Natural Frequencies of Composite Laminates , 1989 .

[28]  Tony G. Gerardi,et al.  Health Monitoring Aircraft , 1990 .

[29]  Dimitris A. Saravanos,et al.  EFFECTS OF DELAMINATIONS ON THE DAMPED DYNAMIC CHARACTERISTICS OF COMPOSITE LAMINATES: ANALYSIS AND EXPERIMENTS , 1996 .

[30]  Norris Stubbs,et al.  Damage Localization in Structures Without Baseline Modal Parameters , 1996 .

[31]  Poul Henning Kirkegaard,et al.  Vibrational Based Inspection Of A Steel Mast , 1994 .

[32]  L. T. Watson,et al.  Detecting delaminations in a composite beam using anti-optimization , 1994 .

[33]  J. N. Reddy,et al.  Modeling of delamination in composite laminates using a layer-wise plate theory , 1991 .

[34]  Tae W. Lim,et al.  Structural damage detection using constrained eigenstructure assignment , 1995 .

[35]  David C. Zimmerman,et al.  Model Refinement and Damage Location for Intelligent Structures , 1992 .

[36]  Bhavani V. Sankar,et al.  A finite element for modeling delaminations in composite beams , 1991 .

[37]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .

[38]  F. Chang,et al.  Identifying Delamination in Composite Beams Using Built-In Piezoelectrics , 1995 .

[39]  Je Masters,et al.  Damage Detection in Composite Materials , 1992 .

[40]  S. Egusa,et al.  Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities , 1998 .

[41]  Craig A. Rogers,et al.  Automated real-time structure health monitoring via signature pattern recognition , 1995, Smart Structures.

[42]  Fu-Kuo Chang,et al.  Impact damage detection in composite structures using distributed piezoceramics , 1994 .

[43]  Rosario Ceravolo,et al.  Damage location in structures through a connectivistic use of FEM modal analyses , 1995 .

[44]  Rongming Lin,et al.  Structural damage detection using measured FRF data , 1997 .

[45]  M. Krawczuk,et al.  Dynamics of cracked composite material structures , 1997 .

[46]  O. S. Salawu,et al.  Damage Location Using Vibration Mode Shapes , 1994 .

[47]  Raymond M. Measures Smart materials and structure , 1990 .

[48]  K. Craig,et al.  Damage detection in composite structures using piezoelectric materials (and neural net) , 1994 .

[49]  Fu-Kuo Chang,et al.  Built-in piezoelectrics for processing and health monitoring of composite structures , 1996 .

[50]  R. Adams,et al.  A Vibration Technique for Non-Destructive Testing of Fibre Composite Structures , 1979 .

[51]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[52]  Masoud Sanayei,et al.  Damage assessment of structures using static test data , 1991 .

[53]  Wing Kong Chiu,et al.  Use of Piezoelectric Films in Detecting and Monitoring Damage in Composites , 1993 .

[54]  J. M. Ko,et al.  Detection of Damage Location Based on Sensitivity Analysis , 1995 .

[55]  Colin P. Ratcliffe,et al.  Vibration Technique for Locating Delamination in a Composite Beam , 1998 .

[56]  Charles R. Farrar,et al.  Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review , 1996 .

[57]  Fu-Kuo Chang,et al.  Identifying Delamination in Composite Beams Using Built-In Piezoelectrics: Part I—Experiments and Analysis , 1995 .

[58]  Robert D. Adams,et al.  The location of defects in structures from measurements of natural frequencies , 1979 .