On the Characterization of Environmental Nanoparticles

Abstract The presence and release of nanoparticles into the environment has important implications for human health and the environment. This article highlights and describes techniques that are effective in the characterization of anthropogenic and naturally occurring nanoparticles. Particle attributes like size, size distribution, shape, structure, microstructure, composition, and homogeneity are critically important to determining the potential impact of such materials on health and the environment. Many techniques yield data for a collection of nanoparticles; while others yield data for individual nanoparticles; and still others yield data showing the size, distribution of chemical species, and variations in structure and microstructure for a single nanoparticle. All are important in the context of environmental nanoparticles. Many of these techniques are complementary, and depending on the information required, the ideal characterization usually employs multiple techniques.

[1]  P. Lagarde Surface X-ray absorption spectroscopy: principles and some examples of applications. , 2001, Ultramicroscopy.

[2]  J. Greve,et al.  Abstracts of papers , 2005, Pharmaceutisch Weekblad.

[3]  M. Bedzyk,et al.  Local structure of Co{sup 2+} incorporated at the calcite surface: An x-ray standing wave and SEXAFS study , 2000 .

[4]  M. Andrade,et al.  Characterisation of aerosol particles in the São Paulo Metropolitan Area , 2002 .

[5]  Renu Sharma Design and Applications of Environmental Cell Transmission Electron Microscope for In Situ Observations of Gas–Solid Reactions , 2001, Microscopy and Microanalysis.

[6]  W. Maenhaut,et al.  Comparative study of elemental mass size distributions in urban atmospheric aerosol , 2002 .

[7]  David C. Joy,et al.  Principles of Analytical Electron Microscopy , 1986, Springer US.

[8]  David M. Brown,et al.  Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. , 2001, Toxicology and applied pharmacology.

[9]  C. Ahn Transmission electron energy loss spectrometry in materials science and the EELS atlas , 2004 .

[10]  D. Rancourt Magnetism of Earth, Planetary, and Environmental Nanomaterials , 2001 .

[11]  V. Randlè,et al.  Representation of electron backscatter diffraction data , 1996 .

[12]  G. U. Kulkarni,et al.  Size-dependent chemistry: properties of nanocrystals. , 2002, Chemistry.

[13]  Michael J. Kleeman,et al.  Particle Detection Efficiencies of Aerosol Time of Flight Mass Spectrometers under Ambient Sampling Conditions , 2000 .

[14]  Michael J. Kleeman,et al.  Size and composition distribution of atmospheric particles in southern California , 1999 .

[15]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[16]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[17]  L. Delzeit,et al.  A characterization of crystalline ice nanoclusters using transmission electron microscopy , 2001 .

[18]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[19]  U. Baltensperger,et al.  In situ characterization and structure modification of agglomerated aerosol particles , 1995 .

[20]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .

[21]  H. Lichte Electron Image Plane Off-axis Holography of Atomic Structures , 1991 .

[22]  M. J. Kelley,et al.  Applications of X-ray Absorption Fine Structure Spectroscopy to Soils , 1994 .

[23]  B. Fultz,et al.  Transmission electron microscopy and diffractometry of materials , 2001 .

[24]  Jeffrey T. Roberts,et al.  Kinetics of diesel nanoparticle oxidation. , 2003, Environmental science & technology.

[25]  A. Blum,et al.  Scanning Probe Microscopy of Clay Minerals , 1994 .

[26]  L. Ebdon,et al.  An Introduction to Analytical Atomic Spectrometry , 1998 .

[27]  G. Waychunas,et al.  Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results , 1996 .

[28]  M. Ebert,et al.  Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles , 2002 .

[29]  Orchowski,et al.  Electron holography surmounts resolution limit of electron microscopy. , 1995, Physical review letters.

[30]  Studies of atmospheric aerosols in large urban areas using PIXE: an overview , 1996 .

[31]  M. Wooldridge,et al.  DEMONSTRATION OF GAS-PHASE COMBUSTION SYNTHESIS OF NANOSIZED PARTICLES USING A HYBRID BURNER , 1999 .

[32]  M. Hoenig Preparation steps in environmental trace element analysis - facts and traps. , 2001, Talanta.

[33]  H. Longerich,et al.  Acid digestion of geological and environmental samples using open-vessel focused microwave digestion , 2002, Analytical and bioanalytical chemistry.

[34]  M. Seah,et al.  Practical Surface Analysis , 1992 .

[35]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[36]  W. MacNee,et al.  Ultrafine particles , 2001, Occupational and environmental medicine.

[37]  A. L. Gray,et al.  Handbook of Inductively Coupled Plasma Mass Spectrometry , 1991 .

[38]  D. Gomez,et al.  Fractionation of elements by particle size of ashes ejected from Copahue Volcano, Argentina. , 2002, Journal of environmental monitoring : JEM.

[39]  K. Klabunde,et al.  Redispersion and Reactivity Studies on Surfactant-Coated Magnesium Oxide Nanoparticles , 2003 .

[40]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[41]  Extended X-Ray Absorption Fine Structure , 2006 .

[42]  V. Grassian,et al.  A Comprehensive Study of the Reactions of Methyl Fragments from Methyl Iodide Dissociation on Reduced and Oxidized Silica-Supported Copper Nanoparticles , 1997 .

[43]  Hsing-Lung Lien,et al.  Nanoscale iron particles for complete reduction of chlorinated ethenes , 2001 .

[44]  R. Ford Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. , 2002, Environmental science & technology.

[45]  Paul Van der Meeren,et al.  Particle Sizing by Photon Correlation Spectroscopy Part I: Monodisperse latices: Influence of scattering angle and concentration of dispersed material , 1991 .

[46]  U. Kurfürst Solid Sample Analysis , 1998 .

[47]  P. Bhave,et al.  The chemical composition of atmospheric ultrafine particles , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[49]  B. Morrical,et al.  Real-Time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a Portable ATOFMS , 1997 .

[50]  Flemming R. Cassee,et al.  Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model , 2002, Archives of Toxicology.

[51]  David B. Williams,et al.  The electron microscope: the materials characterization tool of the millennium☆ , 2000 .

[52]  Allen,et al.  Direct observation of heterogeneous chemistry in the atmosphere , 1998, Science.

[53]  J. Heydenreich High-Resolution Transmission Electron Microscopy and Associated Techniques , 1990 .

[54]  Magnetization reversal measurements of size-selected iron oxide particles produced via an aerosol route , 1998 .

[55]  S. Friedlander,et al.  Smoke, dust, and haze , 2000 .

[56]  Charles M. Lieber,et al.  Functional Group Imaging by Chemical Force Microscopy , 1994, Science.

[57]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[58]  K. Prather,et al.  Improved Lower Particle Size Limit for Aerosol Time-of-Flight Mass Spectrometry , 2001 .

[59]  D. Field Recent advances in the application of orientation imaging , 1997 .

[60]  S. Ito,et al.  Preparation of Colloidal Anatase TiO2 Secondary Submicroparticles by Hydrothermal Sol-Gel Method , 2000 .

[61]  M. Kiskinova,et al.  Photoelectron microscopy and applications in surface and materials science , 2002 .

[62]  J. N. Chapman,et al.  REVIEW ARTICLE: The investigation of magnetic domain structures in thin foils by electron microscopy , 1984 .

[63]  David B. Kittelson,et al.  Size-Selected Nanoparticle Chemistry: Kinetics of Soot Oxidation , 2002 .

[64]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[65]  Scot T. Martin,et al.  8. Atmospheric Nanoparticles , 2001 .

[66]  R. W. Waytulonis,et al.  Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. , 2001, Environmental science & technology.

[67]  R. Finsy,et al.  Particle Sizing by Photon Correlation Spectroscopy. Part II: Average values , 1991 .

[68]  H. R. Anderson,et al.  Differential epidemiology of ambient aerosols , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[69]  R. Cygan,et al.  Gibbsite growth kinetics on gibbsite, kaolinite, and muscovite substrates: atomic force microscopy evidence for epitaxy and an assessment of reactive surface area , 1999 .

[70]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[71]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[72]  Ben J. Williamson,et al.  Physicochemical characterisation of diesel exhaust particles: Factors for assessing biological activity , 1999 .

[73]  Andrew D. Maynard,et al.  Overview of methods for analysing single ultrafine particles , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[74]  Huifang Xu,et al.  Iron oxide coatings on sand grains from the Atlantic coastal plain: High-resolution transmission electron microscopy characterization , 2001 .

[75]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[76]  J. Campbell,et al.  Quantitative PIXE microanalysis of thick specimens , 1993 .

[77]  L. H. Bowen,et al.  Mössbauer spectroscopy. , 1988, Analytical chemistry.

[78]  Roger Proksch,et al.  Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium , 1995 .

[79]  R. M. Cornell,et al.  Formation of goethite from ferrihydrite at physiological pH under the influence of cysteine , 1989 .

[80]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[81]  A. J. Garratt-Reed,et al.  Energy Dispersive X-ray Analysis in the Electron Microscope , 2003 .

[82]  K. Malmqvist Particle-Induced X-Ray Emission — A Quantitative Technique Suitable for Microanalysis , 1996 .

[83]  P. Minutolo,et al.  DLS measurements on nanoparticles produced in laminar premixed flames , 2003 .

[84]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[85]  D. Pohl,et al.  Scanning near-field optical microscopy , 1994 .

[86]  S. Brantley,et al.  Chemical weathering rates of silicate minerals , 1995 .

[87]  J. H. Scott Analytical advances in the SEM , 2003, Analytical and bioanalytical chemistry.

[88]  J. Dean Atomic absorption and plasma spectroscopy , 1997 .

[89]  K. Malmqvist The nuclear microprobe—advances in micro PIXE and complementary techniques , 1995 .

[90]  A. Goodman,et al.  Gas-Phase Photooxidation of Trichloroethylene on TiO2 and ZnO: Influence of Trichloroethylene Pressure, Oxygen Pressure, and the Photocatalyst Surface on the Product Distribution , 1998 .

[91]  I. Dékány,et al.  Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles , 2003 .

[92]  R. L. Penn,et al.  Reduction of crystalline iron(III) oxyhydroxides using hydroquinone: Influence of phase and particle size , 2005, Geochemical transactions.

[93]  B. Turpin,et al.  Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA , 1996 .

[94]  R. L. Penn,et al.  Two-step growth of goethite from ferrihydrite. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[95]  P. Dove,et al.  Reversed calcite morphologies induced by microscopic growth kinetics: Insight into biomineralization , 1999 .

[96]  M. Davies,et al.  Optimizing phase imaging via dynamic force curves , 2000 .

[97]  F. Yen,et al.  Crystallite Size Variations of Nanosized Fe2O3Powders during γ- to α-Phase Transformation , 2002 .

[98]  M. Toney 4.1 – XRD: X-Ray Diffraction , 1992 .

[99]  Alexandra Navrotsky,et al.  Thermochemistry of Nanomaterials , 2001 .

[100]  G. Waychunas,et al.  Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis , 2002 .

[101]  R. McKendry,et al.  How Much Chemistry is There in Chemical Force Microscopy? , 1999 .

[102]  Jillian F. Banfield,et al.  Nanoparticles in the Environment , 2001 .

[103]  K. Prather,et al.  Aerosol time‐of‐flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures , 2003 .

[104]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[105]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[106]  A. Khaleel,et al.  FTIR investigation of adsorption and chemical decomposition of CCl4 by high surface-area aluminum oxide. , 2002, Environmental science & technology.

[107]  P. Sebastián,et al.  Thermal stability and structural deformation of rutile SnO2 nanoparticles , 2003 .

[108]  Roland Wiesendanger Scanning probe microscopy : analytical methods , 1998 .

[109]  L. Wang,et al.  Electronic Structure of Semiconductor Nanocrystals , 2006 .

[110]  P. Maurice,et al.  Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics , 1999 .

[111]  A. Laskin,et al.  Automated single-particle SEM/EDX analysis of submicrometer particles down to 0.1 microm. , 2001, Analytical chemistry.

[112]  L. Guczi,et al.  Gold nanoparticles deposited on SiO2/Si100: correlation between size, electron structure, and activity in CO oxidation. , 2003, Journal of the American Chemical Society.

[113]  Harald Fuchs,et al.  CLASSIFICATION OF SCANNING PROBE MICROSCOPIES (Technical Report) , 1999 .

[115]  G R Cass,et al.  Quantification of ATOFMS data by multivariate methods. , 2001, Analytical chemistry.

[116]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[117]  Gil U. Lee,et al.  Scanning probe microscopy. , 2010, Current opinion in chemical biology.

[118]  F. J. Humphreys Review Grain and subgrain characterisation by electron backscatter diffraction , 2001 .

[119]  K. T. Whitby,et al.  Aerosol classification by electric mobility: apparatus, theory, and applications , 1975 .

[120]  Daniela Zanchet,et al.  X‐ray Characterization of Nanoparticles , 2001 .

[121]  V. Randle,et al.  Microtexture determination by electron back-scatter diffraction , 1992 .

[122]  John Webb,et al.  Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions. , 2003, Journal of inorganic biochemistry.

[123]  P. Bertsch,et al.  Influence of sorbate-sorbent interactions on the crystallization kinetics of nickel- and lead-ferrihydrite coprecipitates , 1999 .

[124]  E. Swietlicki,et al.  The use of PIXE and complementary ion beam analytical techniques for studies of atmospheric aerosols , 1996 .

[125]  Y. Strausser 5.3 – AES: Auger Electron Spectroscopy , 1992 .

[126]  W Slavin,et al.  Atomic absorption spectrometry. , 1988, Methods in enzymology.

[127]  L. Charlet,et al.  Methods for Performing Atomic Force Microscopy Imaging of Clay Minerals in Aqueous Solutions , 1999 .

[128]  P. V. van Aken,et al.  The heterogeneous composition of working place aerosols in a nickel refinery: a transmission and scanning electron microscope study. , 2002, Journal of environmental monitoring : JEM.

[129]  A. Rowbotham,et al.  Chromium in the environment: an evaluation of exposure of the UK general population and possible adverse health effects. , 2000, Journal of toxicology and environmental health. Part B, Critical reviews.

[130]  J. Cafmeyer,et al.  Long-term atmospheric aerosol study at urban and rural sites in Belgium using multi-elemental analysis by particle-induced x-ray emission spectrometry and short-irradiation instrumental neutron activation analysis , 1998 .

[131]  Hugo Jean Marie Demeyere,et al.  PARTICLE SIZING BY PHOTON-CORRELATION SPECTROSCOPY .4. RESOLUTION OF BIMODALS AND COMPARISON WITH OTHER PARTICLE SIZING METHODS. , 1993 .

[132]  H. Fuchs,et al.  Classification of Scanning Probe Microscopies , 1999 .

[133]  B. Mihailova,et al.  Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria , 2002 .

[134]  J. Wolf,et al.  Characterization of urban aerosols using SEM-microscopy, X-ray analysis and Lidar measurements , 1998 .

[135]  N. N. GREENWOOD,et al.  Mossbauer Spectroscopy , 1966, Nature.

[136]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[137]  J. Seinfeld,et al.  A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project , 2003 .

[138]  R. Finsy,et al.  Particle sizing by quasi-elastic light scattering , 1994 .

[139]  G. Waychunas Structure, Aggregation and Characterization of Nanoparticles , 2001 .

[140]  K. Prather,et al.  Aerosol time‐of‐flight mass spectrometry during the Atlanta Supersite Experiment: 1. Measurements , 2003 .

[141]  D. Dollimore,et al.  The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas , 1976 .

[142]  Ian Colbeck,et al.  Coarse atmospheric aerosol: size distributions of trace elements , 2001 .

[143]  P. Maurice Applications of atomic-force microscopy in environmental colloid and surface chemistry , 1996 .

[144]  M. Antonio 4.2 – EXAFS: Extended X-Ray Absorption Fine Structure , 1992 .

[145]  D. Rader,et al.  Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation , 1986 .

[146]  Tianbo Liu,et al.  Characterization of Nanoparticles by Scattering Techniques , 2000 .

[147]  L. Mulay,et al.  Magnetometry: instrumentation and analytical applications including catalysis, bioscience, geoscience, and amorphous materials , 1982 .

[148]  J. Götze Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials , 2002, Analytical and bioanalytical chemistry.

[149]  R. Matyi,et al.  Particle Size, Particle Size Distribution, and Related Measurements of Supported Metal Catalysts , 1987 .

[150]  U. Schwertmann,et al.  IRON OXIDES AND SMECTITES IN SEDIMENTS FROM THE ATLANTIS II DEEP, RED SEA , 1998 .

[151]  R. Merlin,et al.  Raman scattering in materials science , 2000 .

[152]  Hsing-Lung Lien,et al.  Treatment of chlorinated organic contaminants with nanoscale bimetallic particles , 1998 .