The role of protein assembly in dynamically tunable bio-optical tissues.

[1]  James C. Weaver,et al.  Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid , 2010, Journal of The Royal Society Interface.

[2]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[3]  R. Naik,et al.  The self-organizing properties of squid reflectin protein. , 2007, Nature materials.

[4]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[5]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[6]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  M. Madou,et al.  Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics , 2005, Nature Materials.

[8]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[9]  M. McFall-Ngai,et al.  Reflectins: The Unusual Proteins of Squid Reflective Tissues , 2004, Science.

[10]  S. Mirow Skin color in the squids Loligo pealii and Loligo opalescens , 1972, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[11]  Roger T. Hanlon,et al.  Physiological color change in squid iridophores , 2004, Cell and Tissue Research.

[12]  F. Woodward,et al.  The role of stomata in sensing and driving environmental change , 2003, Nature.

[13]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[14]  K. Dawson The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions , 2002 .

[15]  N Shashar,et al.  An ethogram of body patterning behavior in the biomedically and commercially valuable squid Loligo pealei off Cape Cod, Massachusetts. , 1999, The Biological bulletin.

[16]  C. Brinker,et al.  Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre , 1998, Nature.

[17]  Andrew P. Somlyo,et al.  Signal transduction and regulation in smooth muscle , 1994, Nature.

[18]  E. Atkins,et al.  Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. , 1994, Science.

[19]  D E Ingber,et al.  Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. , 1994, Biophysical journal.

[20]  Dan W. Urry,et al.  Molecular Machines: How Motion and Other Functions of Living Organisms Can Result from Reversible Chemical Changes , 1993 .

[21]  Richard A. Cloney,et al.  Chromatophore Organs, Reflector Cells, Iridocytes and Leucophores in Cephalopods , 1983 .

[22]  J. Piatigorsky,et al.  Lens cataract formation and reversible alteration in crystallin synthesis in cultured lenses. , 1977, Science.

[23]  R. Young,et al.  ULTRASTRUCTURE OF A CEPHALOPOD PHOTOPHORE. II. IRIDOPHORES AS REFLECTORS AND TRANSMITTERS. , 1974, The Biological bulletin.

[24]  A. Spector,et al.  What is alpha crystallin? , 1971, American journal of ophthalmology.

[25]  J. Arnold Organellogenesis of the cephalopod iridophore: cytomembranes in development. , 1967, Journal of ultrastructure research.