The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity

An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials, is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimates. The theory is illustrated by a numerical example.

[1]  Fardin Saedpanah,et al.  Well-posedness of an integro-differential equation with positive type kernels modeling fractional order viscoelasticity , 2012, 1203.4001.

[2]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[3]  Continuous Galerkin finite element methods for hyperbolic integro-differential equations , 2013, 1303.2250.

[4]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[5]  J. Whiteman,et al.  A posteriori error estimates for space–time finite element approximation of quasistatic hereditary linear viscoelasticity problems , 2004 .

[6]  Stig Larsson,et al.  Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel , 2003 .

[7]  Vidar Thomée,et al.  Discretization with variable time steps of an evolution equation with a positive-type memory term , 1996 .

[8]  Stig Larsson,et al.  Adaptive discretization of fractional order viscoelasticity using sparse time history , 2004 .

[9]  V. Thomée,et al.  Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations , 1991 .

[10]  J. Whiteman,et al.  Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems , 2007 .

[11]  Vidar Thomée,et al.  Time discretization of an integro-differential equation of parabolic type , 1986 .

[12]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[13]  Stig Larsson,et al.  The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity , 2010 .

[14]  Vidar Thomée,et al.  Time discretization via Laplace transformation of an integro-differential equation of parabolic type , 2006, Numerische Mathematik.

[15]  Stig Larsson,et al.  Discretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity , 2005, LSSC.

[16]  Vidar Thomée,et al.  Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[17]  Vidar Thomée,et al.  Numerical methods for hyperbolic and parabolic integro-differential equations , 1992 .

[18]  K. Adolfsson,et al.  Space-time Discretization of an Integro-differential Equation Modeling Quasi-static Fractional-order Viscoelasticity , 2008 .

[19]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[20]  Christian Lubich,et al.  Adaptive, Fast, and Oblivious Convolution in Evolution Equations with Memory , 2006, SIAM J. Sci. Comput..

[21]  Kazufumi Ito,et al.  Semigroup theory and numerical approximation for equations in linear viscoelasticity , 1990 .

[22]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[23]  Fardin Saedpanah A posteriori error analysis for a continuous space-time finite element method for a hyperbolic integro-differential equation , 2012, 1205.0159.

[24]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..