Neural engineering and brain-computer interface

Neural engineering is an emerging research area in biomedical engineering. Neural engineering brings to bear neuroscience and engineering methods to analyze neurological function as well as to design solutions to problems associated with neurological limitations and dysfunction. Currently, brain-computer interface has become one of the most active research directions in neural engineering. Brain-computer interface (BCI) is a direct non-muscular communication or control channel between brain and computer or external devices. In a BCI system, users produce special pattern of brain signals which encode his/her intention, and computer will translate the signals into control commends so that people with severe motor disorders can use it for communication or controls. Electroencephalogram (EEG) based BCI is a non-invasive technology and probably the most acceptable system for various users. In EEG based BCI systems, brain signals are usually be classified as endogenous and exogenous. The exogenous components are determined by the parameters of the physical stimulus (visual, auditory or tactile) rather than by a cognitive event, whereas the endogenous components are determined by some cognitive event rather than by the physical stimulus. In many cases, transient evoked potentials adopted in BCI systems are composed of both endogenous and exogenous components. Seeking for new BCI modalities, which can significant enhance both endogenous and exogenous components in recordedEEG signals is of great importance in BCI system development. A novel design of BCI paradigms based on motion-onset visual evoked potentials is presented. Finally, an overview of the trend and future development of BCI is discussed.