4-Carboxyphenyl isothiocyanate as a Lewis base additive for efficient and stable perovskite solar cells

[1]  Zhike Liu,et al.  Stable 24.29%‐Efficiency FA0.85MA0.15PbI3 Perovskite Solar Cells Enabled by Methyl Haloacetate‐Lead Dimer Complex , 2022, Advanced Energy Materials.

[2]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[3]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[4]  Fuzhi Huang,et al.  Toward Commercialization of Efficient and Stable Perovskite Solar Modules , 2021, Solar RRL.

[5]  Jing Zhang,et al.  Effective lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells , 2021 .

[6]  H. Song,et al.  Multifunctional Reductive Molecular Modulator toward Efficient and Stable Perovskite Solar Cells , 2021, Solar RRL.

[7]  Zhike Liu,et al.  A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23% , 2021, Nano-micro letters.

[8]  Chen Li,et al.  Marked Passivation Effect of Naphthalene‐1,8‐Dicarboximides in High‐Performance Perovskite Solar Cells , 2021, Advanced materials.

[9]  S. Maruyama,et al.  Role and Contribution of Polymeric Additives in Perovskite Solar Cells: Crystal Growth Templates and Grain Boundary Passivators , 2021 .

[10]  Jing Zhao,et al.  Exploring the film growth in perovskite solar cells , 2021 .

[11]  Wei Huang,et al.  Solvent Engineering of the Precursor Solution toward Large‐Area Production of Perovskite Solar Cells , 2021, Advanced materials.

[12]  G. Fang,et al.  Unraveling the Impact of Halide Mixing on Crystallization and Phase Evolution in CsPbX3 Perovskite Solar Cells , 2020, Matter.

[13]  D. Tang,et al.  Surfactant Sodium Dodecyl Benzene Sulfonate Improves the Efficiency and Stability of Air‐Processed Perovskite Solar Cells with Negligible Hysteresis , 2020 .

[14]  M. Abdi‐Jalebi,et al.  Recent progress in morphology optimization in perovskite solar cell , 2020, Journal of Materials Chemistry A.

[15]  Danjie Liu,et al.  Bilayer broadband antireflective coating to achieve planar heterojunction perovskite solar cells with 23.9% efficiency , 2020, Science China Materials.

[16]  F. Kang,et al.  Suppressing Defects‐Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering , 2020, Advanced materials.

[17]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[18]  Yuzhu Li,et al.  Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts , 2020 .

[19]  Hongyu Liu,et al.  Binary synergetic ions reduce defect density in ambient air processed perovskite solar cells , 2020 .

[20]  B. Bahrami,et al.  Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation , 2020 .

[21]  Wen-Hau Zhang,et al.  Interfacial Contact Passivation for Efficient and Stable Cesium-Formamidinium Double-Cation Lead Halide Perovskite Solar Cells , 2019, iScience.

[22]  S. Liu,et al.  Pseudohalide (SCN−)-doped CsPbI3 for high-performance solar cells , 2019, Journal of Materials Chemistry C.

[23]  Xingwang Zhang,et al.  Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[24]  K. Zhu,et al.  Additive Engineering for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Energy Materials.

[25]  Dong Hoe Kim,et al.  Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS , 2019, Joule.

[26]  Yang Yang,et al.  Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells , 2019, Joule.

[27]  Phillip Lee,et al.  Controlling the Morphology of Organic-Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications. , 2019, ACS applied materials & interfaces.

[28]  Q. Tang,et al.  Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells , 2019, Journal of Materials Chemistry A.

[29]  Xing’ao Li,et al.  Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. , 2018, ACS applied materials & interfaces.

[30]  J. Xiong,et al.  An efficient guanidinium isothiocyanate additive for improving the photovoltaic performances and thermal stability of perovskite solar cells , 2018, Electrochimica Acta.

[31]  Xingzhong Zhao,et al.  Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells , 2018 .

[32]  Yingchun Cheng,et al.  Synergistic effect of anions and cations in additives for highly efficient and stable perovskite solar cells , 2018 .

[33]  M. Grätzel,et al.  Carbon Nanoparticles in High‐Performance Perovskite Solar Cells , 2018 .

[34]  T. Ma,et al.  Incredible PCE enhancement induced by damaged perovskite layers: deeply understanding the working principle of additives in bulk heterojunction perovskite solar cells , 2018 .

[35]  Yin Xiao,et al.  Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability , 2018 .

[36]  Yongfang Li,et al.  Polymer Doping for High‐Efficiency Perovskite Solar Cells with Improved Moisture Stability , 2018 .

[37]  Mingkui Wang,et al.  The Role of Synthesis Parameters on Crystallization and Grain Size in Hybrid Halide Perovskite Solar Cells , 2017 .

[38]  M. Li,et al.  Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[39]  S. Haque,et al.  Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells , 2017, Nature Communications.

[40]  Changli Li,et al.  Fabrication of high quality perovskite films by modulating the Pb–O bonds in Lewis acid–base adducts , 2017 .

[41]  H. Xin,et al.  Highly efficient and stable inverted planar solar cells from (FAI)x(MABr)1−xPbI2 perovskites , 2017 .

[42]  Jinsong Huang,et al.  π‐Conjugated Lewis Base: Efficient Trap‐Passivation and Charge‐Extraction for Hybrid Perovskite Solar Cells , 2017, Advanced materials.

[43]  Wei Geng,et al.  Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High‐Efficiency and Air‐Stable Photovoltaic Cells , 2016, Advanced materials.

[44]  M. Nazeeruddin,et al.  PbI2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH3NH3PbI3 Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[45]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[46]  Mi Kyung Kim,et al.  Effective control of crystal grain size in CH3NH3PbI3 perovskite solar cells with a pseudohalide Pb(SCN)2 additive , 2016 .

[47]  D. Mitzi,et al.  Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells , 2016, Advanced materials.

[48]  Q. Gong,et al.  Morphology control of the perovskite films for efficient solar cells. , 2015, Dalton transactions.

[49]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[50]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[51]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[52]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.