Operator Fitting for Parameter Estimation of Stochastic Differential Equations

Estimation of parameters is a crucial part of model development. When models are deterministic, one can minimise the fitting error; for stochastic systems one must be more careful. Broadly parameterisation methods for stochastic dynamical systems fit into maximum likelihood estimation- and method of moment-inspired techniques. We propose a method where one matches a finite dimensional approximation of the Koopman operator with the implied Koopman operator as generated by an extended dynamic mode decomposition approximation. One advantage of this approach is that the objective evaluation cost can be independent the number of samples for some dynamical systems. We test our approach on two simple systems in the form of stochastic differential equations, compare to benchmark techniques, and consider limited eigen-expansions of the operators being approximated. Other small variations on the technique are also considered, and we discuss the advantages to our formulation.

[1]  Igor Mezic,et al.  On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator , 2017, J. Nonlinear Sci..

[2]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[3]  L. Hansen LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF , 1982 .

[4]  Patrick Kofod Mogensen,et al.  Optim: A mathematical optimization package for Julia , 2018, J. Open Source Softw..

[5]  Keegan E. Hines,et al.  A primer on Bayesian inference for biophysical systems. , 2015, Biophysical journal.

[6]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[7]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[8]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[9]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[10]  D. Hamby A review of techniques for parameter sensitivity analysis of environmental models , 1994, Environmental monitoring and assessment.

[11]  Alexandre Mauroy,et al.  Linear identification of nonlinear systems: A lifting technique based on the Koopman operator , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[12]  Hans Bock,et al.  Numerical Methods for Parameter Estimation in Nonlinear Differential Algebraic Equations , 2007 .

[13]  J. Timmer,et al.  Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. , 2007, IET systems biology.

[14]  N. Lazar,et al.  Methods and Criteria for Model Selection , 2004 .

[15]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Maini,et al.  A practical guide to stochastic simulations of reaction-diffusion processes , 2007, 0704.1908.

[17]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[18]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[19]  Jiguo Cao,et al.  On the selection of ordinary differential equation models with application to predator‐prey dynamical models , 2015, Biometrics.

[20]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[21]  K. Lindsay,et al.  Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations , 2006 .

[22]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.

[23]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[24]  Umberto Picchini Inference for SDE Models via Approximate Bayesian Computation , 2012, 1204.5459.

[25]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[26]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[27]  Guido Sanguinetti,et al.  The complex chemical Langevin equation. , 2014, The Journal of chemical physics.

[28]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[29]  R. Penrose A Generalized inverse for matrices , 1955 .

[30]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[31]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[32]  Hao Wu,et al.  Data-Driven Model Reduction and Transfer Operator Approximation , 2017, J. Nonlinear Sci..

[33]  Andreas Huth,et al.  Statistical inference for stochastic simulation models--theory and application. , 2011, Ecology letters.