Serial concatenation of quadratic interleaved codes in different wireless doppler environments

The remarkable development of mobile networks has enabled ubiquitous communications that has transformed the way people connect with each other. Meanwhile, the growing adoption of smartphones, tablets, and increasingly bandwidth-intensive applications and services is driving unprecedented mobile broadband traffic growth; therefore, finding state-of-the-art strategies for improving the wireless transmission reliability has emerged significantly. In particular, to enable significant mitigation of the detrimental effects of multipath fading, high-performance forward error correction (FEC) techniques have now recognized to become a vital part of modern digital wireless systems. This work is dedicated to address a class of high-performance iteratively decoded FECs referred to as serial concatenation of quadratic interleaved codes (SCQICs) wherein the reordering arrays for permutor and unscramble in the FEC encoding/decoding entities enjoy the remarkable algorithm proposed by Takeshita et al. seminal contribution which: (1) yields provisioning coding gain in both waterfall and error-floor regions of the bit error rate (BER) performance curve (2) enables possibility of analysis and compact representation, (3) requires straightforward implementation. We have observed that their utilization for the modern wireless communications applications remained scarce due to the lack of strong and comprehensive performance predictions over the different statistical wireless channel models. Hence, in this paper, we endeavor to analyze and examine the error-correction capability of SCQICs vastly from the various aspects, and investigate their resultant coding gains in different wireless Doppler environments.

[1]  Stephen B. Wicker,et al.  Turbo Coding , 1998 .

[2]  Branka Vucetic,et al.  Turbo Codes: Principles and Applications , 2000 .

[3]  D. Costello,et al.  New classes of algebraic interleavers for turbo-codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[5]  M. Kovaci,et al.  The performances of interleavers used in turbo codes , 2005, International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005..

[6]  A. Robert Calderbank,et al.  Space-time block coding for wireless communications: performance results , 1999, IEEE J. Sel. Areas Commun..

[7]  XuLin Quan,et al.  A Dual-Broadband MIMO Antenna System for GSM/UMTS/LTE and WLAN Handsets , 2012, IEEE Antennas and Wireless Propagation Letters.

[8]  Andreas F. Molisch,et al.  Wireless Communications , 2005 .

[9]  L. Clavier,et al.  Turbo code decoding in MAI environment , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[10]  Phillip A. Bello,et al.  Aeronautical Channel Characterization , 1973, IEEE Trans. Commun..

[11]  Qinghua Li,et al.  Advancement of MIMO technology in WiMAX: from IEEE 802.16d/e/j to 802.16m , 2009, IEEE Commun. Mag..

[12]  Lajos Hanzo,et al.  Evolutionary Algorithm Aided Interleaver Design for Serially Concatenated Codes , 2011, IEEE Transactions on Communications.

[13]  Vinko Erceg,et al.  Channel Models for Fixed Wireless Applications , 2001 .

[14]  Choi Look Law,et al.  On the Doppler power spectrum at the mobile unit employing a directional antenna , 2001, IEEE Communications Letters.

[15]  L. Hanzo,et al.  Space-time codes and concatenated channel codes for wireless communications , 2002, Proceedings of the IEEE.

[16]  F. Gini,et al.  Generalized differential encoding: a nonlinear signal processing framework , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[17]  P. Glenn Gulak,et al.  Reduced complexity symbol detectors with parallel structure for ISI channels , 1994, IEEE Trans. Commun..

[18]  Aleksandar Dogandzic,et al.  Estimating Jakes' Doppler power spectrum parameters using the whittle approximation , 2005, IEEE Transactions on Signal Processing.

[19]  Ardavan Rahimian,et al.  Short-length FSU-SCQICs over coherent and incoherent stochastic aeronautical MISO channels , 2013, 2013 19th Asia-Pacific Conference on Communications (APCC).

[20]  W. Marsden I and J , 2012 .

[21]  F. Mehran,et al.  Physical layer performance enhancement for femtocell SISO/MISO soft real-time wireless communication systems employing Serial Concatenation of Quadratic Interleaved Codes , 2012, 20th Iranian Conference on Electrical Engineering (ICEE2012).

[22]  Niyazi Odabasioglu,et al.  2D IMAGE TRANSMISSION USING KALMAN-TURBO SYSTEMS , 2005 .

[23]  Matthew Valenti,et al.  Turbo Codes , 2007 .

[24]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[25]  Rolando Carrasco,et al.  Comparison of convolutional and turbo coding schemes for broadband FWA systems , 2007 .

[26]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[27]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[28]  Farhad Mehran Performance evaluation of Serial Concatenated Convolutional Codes over aeronautical channels , 2010, 2010 5th International Symposium on Telecommunications.

[29]  Miguel R. D. Rodrigues,et al.  Comparison of Convolutional and Turbo Coding for Broadband FWA Systems , 2007, IEEE Transactions on Broadcasting.

[30]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[31]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[32]  Hamid R. Sadjadpour,et al.  Maximum a posteriori decoding algorithms for turbo codes , 2000, SPIE Defense + Commercial Sensing.

[33]  Robert Langwieser,et al.  A UHF frontend for MIMO applications in RFID , 2010, 2010 IEEE Radio and Wireless Symposium (RWS).

[34]  Daniel J. Costello,et al.  New deterministic interleaver designs for turbo codes , 2000, IEEE Trans. Inf. Theory.

[35]  Shu Lin,et al.  Two simple stopping criteria for turbo decoding , 1999, IEEE Trans. Commun..

[36]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[37]  Sergio Benedetto,et al.  Serial concatenation of block and convolutional codes , 1996 .

[38]  Yufei W. Blankenship,et al.  A simple stopping criterion for turbo decoding , 2000, IEEE Communications Letters.

[39]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[40]  Wessam Ajib,et al.  The Capacity of MIMO-based Wireless Mesh Networks , 2007, 2007 15th IEEE International Conference on Networks.

[42]  Matthias Patzold,et al.  Mobile Fading Channels , 2003 .

[43]  B. L. Yeap,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding , 2002 .

[44]  Robert F. H. Fischer,et al.  Coded Modulation for Differential Encoding and Non-Coherent Reception on Fading Channels , 2000 .

[45]  V. Erceg,et al.  TGn Channel Models , 2004 .