Magnetic material performance of transformers in common mode active EMI filters for bearing current suppression

This paper analyses the performance of two magnetic materials used in the active filters for Common Mode (CM) electromagnetic interference (EMI) reduction in induction motor drives. In particular, active filters based on CM voltage compensation, very useful in bearing current suppression, are considered. The magnetic material is exploited for the core of the common mode transformer (CMT) that it is a crucial part of such devices because it performs the injection of the compensation voltage into the power connections between the inverter and the motor. The issues regarding the choice of the CMT core magnetic material and the windings design are discussed. The problem of the magnetic saturation, related to the desired high power/weight ratio is investigated. Furthermore, the power losses in the magnetic material under non-sinusoidal supply condition are evaluated through a suitable measurement system. A comparison of two CMTs, realized with ferrite and with nanocrystalline material cores, respectively, which are designed to perform the same filtering effect, is presented. Streszczenie. W artykule przedstawiono analize wlaściwości dwoch materialow magnetycznych stosowanych w aktywnych filtrach EMI. Przedstawiono zalecenia dotyczące doboru materialu (glownie indukcji nasycenia) jak i konstrukcji dlawikow i transformatorow. Zmierzono takze straty mocy w warunkach zasilania niesinusoidalnego. Porownano dwa materialy – ferryty i materialy nanokrystaliczne. (Wlaściwości materialow magnetycznych stosowanych w aktywnych filtrach EMI)

[1]  S.Y.R. Hui,et al.  Measurement and Modeling of Thermal Effects on Magnetic Hysteresis of Soft Ferrites , 2007, IEEE Transactions on Magnetics.

[2]  F. Fiorillo,et al.  Loss and Permeability Dependence on Temperature in Soft Ferrites , 2009, IEEE Transactions on Magnetics.

[3]  P. Marketos,et al.  Power Loss Measurement and Prediction of Soft Magnetic Powder Composites Magnetized Under Sinusoidal and Nonsinusoidal Excitation , 2008, IEEE Transactions on Magnetics.

[4]  Andrea Cavagnino,et al.  Predicting iron losses in soft magnetic materials with arbitrary voltage supply: an engineering approach , 2003 .

[5]  Anthony John Moses,et al.  Power loss of non oriented electrical steel under square wave excitation , 2001 .

[6]  M. Di Piaza,et al.  A Laplace Domain Modelling Approach for CM Active EMI Filters , 2010 .

[7]  Annette Muetze,et al.  Practical Rules for Assessment of Inverter-Induced Bearing Currents in Inverter-Fed AC Motors up to 500 kW , 2007, IEEE Transactions on Industrial Electronics.

[8]  P. Sergeant,et al.  Modeling the Electromagnetic Behavior of Nanocrystalline Soft Materials , 2009, IEEE Transactions on Magnetics.

[9]  Hirofumi Akagi,et al.  An active circuit for cancellation of common-mode voltage generated by a PWM inverter , 1997, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972.

[10]  W. Roshen,et al.  Magnetic loss in soft ferrites , 2007 .

[11]  D. Boroyevich,et al.  Loss Characterization and Calculation of Nanocrystalline Cores for High-Frequency Magnetics Applications , 2007, IEEE Transactions on Power Electronics.

[12]  Gianpaolo Vitale,et al.  An Improved Active Common-Mode Voltage Compensation Device for Induction Motor Drives , 2008, IEEE Transactions on Industrial Electronics.

[13]  Russel J. Kerkman,et al.  EMI emissions of modern PWM AC drives , 1999 .

[14]  Gianpaolo Vitale,et al.  Input EMI in Inverter-fed Motor Drives with Active Filtering of Motor CM Voltage , 2009 .