Function and evolution of the plant MADS-box gene family

The function of MADS-box genes in flower and fruit development has been uncovered at a rapid pace over the past decade. Evolutionary biologists can now analyse the expression pattern of MADS-box genes during the development of different plant species, and study the homology of body parts and the evolution of body plans. These studies have shown that floral development is conserved among divergent species, and indicate that the basic mechanism of floral patterning might have evolved in an ancient flowering plant.

[1]  Plant development: Genetic clues to petal evolution , 1999, Current Biology.

[2]  Elliot M. Meyerowitz,et al.  Arabidopsis, a useful weed , 1989, Cell.

[3]  G. Ditta,et al.  Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate , 1999, Plant Cell.

[4]  H. Sommer,et al.  Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS‐box gene squamosa in Antirrhinum majus. , 1992, The EMBO journal.

[5]  Mark W. Chase,et al.  The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes , 1999, Nature.

[6]  R. Dorit,et al.  Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. , 1998, Genetics.

[7]  M. Svensson,et al.  The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. , 2000, Gene.

[8]  G. Coupland,et al.  A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. , 1996, The Plant cell.

[9]  M. Mandel,et al.  The ArabidopsisAGL9 MADS box gene is expressed in young flower primordia , 1998, Sexual Plant Reproduction.

[10]  C. dePamphilis,et al.  Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Saedler,et al.  MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. R. Samaha,et al.  Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. , 2000, Science.

[13]  F. Madueño,et al.  Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. , 1997, The Plant cell.

[14]  Elliot M. Meyerowitz,et al.  The ABCs of floral homeotic genes , 1994, Cell.

[15]  G. Coupland,et al.  Time measurement and the control of flowering in plants. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  S. Jacobsen,et al.  SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Theißen,et al.  MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. , 1999, Developmental genetics.

[18]  Elliot M. Meyerowitz,et al.  Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes , 1993 .

[19]  K. Goto,et al.  The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. , 2000, Development.

[20]  S. Briggs,et al.  Diversification of C-Function Activity in Maize Flower Development , 1996, Science.

[21]  H. Saedler,et al.  MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. , 1995, Current opinion in genetics & development.

[22]  P. Huijser,et al.  Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. , 2000, The Plant journal : for cell and molecular biology.

[23]  M. Akam,et al.  Hox genes and the diversification of insect and crustacean body plans , 1995, Nature.

[24]  D. G. Brown,et al.  The origins of genomic duplications in Arabidopsis. , 2000, Science.

[25]  H. Sommer,et al.  Characterization of the Antirrhinum floral homeotic MADS‐box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. , 1992, The EMBO journal.

[26]  Y. Rong,et al.  Gene targeting by homologous recombination in Drosophila. , 2000, Science.

[27]  S. Kay,et al.  Flower Arranging in Arabidopsis , 2000, Science.

[28]  W. Peacock,et al.  The FLF MADS Box Gene: A Repressor of Flowering in Arabidopsis Regulated by Vernalization and Methylation , 1999, Plant Cell.

[29]  Cindy Gustafson-Brown,et al.  Regulation of the arabidopsis floral homeotic gene APETALA1 , 1994, Cell.

[30]  N. Ashton,et al.  Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues. , 2000, The New phytologist.

[31]  D. Weigel,et al.  LEAFY controls floral meristem identity in Arabidopsis , 1992, Cell.

[32]  G. Stebbins NATURAL SELECTION AND THE DIFFERENTIATION OF ANGIOSPERM FAMILIES , 1951 .

[33]  E. Álvarez-Buylla,et al.  MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. , 2000, The Plant journal : for cell and molecular biology.

[34]  A. Bell,et al.  Plant Form: An Illustrated Guide to Flowering Plant Morphology , 1991 .

[35]  D. Weigel,et al.  Activation of a floral homeotic gene in Arabidopsis. , 1999, Science.

[36]  H. Sommer,et al.  PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS‐box factors controlling flower development , 1999, The EMBO journal.

[37]  J. Palmer,et al.  Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Mann,et al.  Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. , 1999, Genes & development.

[39]  G. Angenent,et al.  Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. , 1994, The Plant journal : for cell and molecular biology.

[40]  Claude dePamphilis,et al.  The ABCs of Floral Evolution , 2000, Cell.

[41]  R. Krumlauf Hox genes in vertebrate development , 1994, Cell.

[42]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[43]  T Marty,et al.  Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. , 1999, Development.

[44]  D. Weigel,et al.  Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter , 1998, Plant Cell.

[45]  M. Scott,et al.  A class act: conservation of homeodomain protein functions. , 1994, Development (Cambridge, England). Supplement.

[46]  W. Nacken,et al.  Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus , 1990, Science.

[47]  T. Jack,et al.  The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. , 1998, Development.

[48]  S. Carroll,et al.  Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. , 1998, Genes & development.

[49]  J. S. Lee,et al.  The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. , 2000, Genes & development.

[50]  E. Meyerowitz,et al.  Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity , 1994, Cell.

[51]  M. Frohlich MADS about Gnetales. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Mouradov,et al.  Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine , 1998, Plant physiology.

[53]  S. Masiero,et al.  BRANCHED SILKLESS mediates the transition from spikelet to floral meristem during Zea mays ear development , 1998 .

[54]  Jody Hey,et al.  The limits of selection during maize domestication , 1999, Nature.

[55]  N. Patel,et al.  Crustacean appendage evolution associated with changes in Hox gene expression , 1997, Nature.

[56]  M. Purugganan,et al.  Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. , 1995, Genetics.

[57]  D. Schaefer,et al.  Efficient gene targeting in the moss Physcomitrella patens. , 1997, The Plant journal : for cell and molecular biology.

[58]  G. An,et al.  Characterization of two rice MADS box genes homologous to GLOBOSA , 1995 .

[59]  Peter A. Lawrence,et al.  Homeobox genes: Their function in Drosophila segmentation and pattern formation , 1994, Cell.

[60]  G. Ditta,et al.  B and C floral organ identity functions require SEPALLATA MADS-box genes , 2000, Nature.

[61]  R. Mann,et al.  The control of trunk Hox specificity and activity by Extradenticle. , 1999, Genes & development.

[62]  D. Soltis,et al.  Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology , 1999, Nature.

[63]  C D Day,et al.  Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. , 1998, Development.

[64]  Esteban Martínez,et al.  Anatomia reproductiva de Lacandonia schismatica (Lacandoniaceae). , 1989 .

[65]  E. Meyerowitz Plants, animals and the logic of development. , 1999, Trends in cell biology.

[66]  M. Yanofsky,et al.  Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. , 2000, Science.

[67]  B. Forde,et al.  An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. , 1998, Science.

[68]  L. Mao,et al.  JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development , 2000, Nature.

[69]  S. Carroll,et al.  Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade , 1997, Current Biology.

[70]  R. Simon,et al.  The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors , 1995, Cell.

[71]  M. Cohn,et al.  Developmental basis of limblessness and axial patterning in snakes , 1999, Nature.

[72]  D. Weigel,et al.  A genetic framework for floral patterning , 1998, Nature.

[73]  Paul Shinn,et al.  Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana , 2000, Nature.

[74]  D Weigel,et al.  Flowering-time genes modulate the response to LEAFY activity. , 1998, Genetics.

[75]  H. Sommer,et al.  Multiple interactions amongst floral homeotic MADS box proteins. , 1996, The EMBO journal.

[76]  E. Coen,et al.  The war of the whorls: genetic interactions controlling flower development , 1991, Nature.

[77]  R. Amasino,et al.  FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering , 1999, Plant Cell.

[78]  R. Martienssen,et al.  The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. , 1998, Development.

[79]  W. Martin,et al.  Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. Yanofsky Floral Meristems to Floral Organs: Genes Controlling Early Events in Arabidopsis Flower Development , 1995 .

[81]  P. Ciceri,et al.  Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. , 2000, Molecular cell.

[82]  L. Pnueli,et al.  The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. , 1994, The Plant cell.

[83]  M. Yanofsky,et al.  Molecular basis of the cauliflower phenotype in Arabidopsis , 1995, Science.

[84]  W. Stiekema,et al.  A Two-Component Enhancer-Inhibitor Transposon Mutagenesis System for Functional Analysis of the Arabidopsis Genome , 1999, Plant Cell.

[85]  S. Carroll,et al.  Selector Genes and Limb Identity in Arthropods and Vertebrates , 1999, Cell.

[86]  S. Carroll Endless Forms The Evolution of Gene Regulation and Morphological Diversity , 2000, Cell.

[87]  E. Kramer,et al.  Evolution of genetic mechanisms controlling petal development , 1999, Nature.

[88]  E. Meyerowitz,et al.  The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. , 1996, Development.

[89]  G. Theißen,et al.  A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. , 1999, Developmental genetics.

[90]  E. Coen,et al.  Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum , 1993, Cell.

[91]  R. Martienssen,et al.  Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. , 2000, Development.

[92]  E. Meyerowitz,et al.  MADS domain proteins in plant development. , 1997, Biological chemistry.

[93]  Pilar Cubas,et al.  An epigenetic mutation responsible for natural variation in ̄ oral symmetry , 2022 .

[94]  M. Purugganan,et al.  Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. , 1999, The Journal of heredity.

[95]  S. Regan,et al.  Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. , 1998, The Plant journal : for cell and molecular biology.

[96]  G. An,et al.  Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. , 1997, Molecules and cells.

[97]  The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. , 1995, The Plant cell.

[98]  Eugen C. Buehler,et al.  Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana , 1999, Nature.

[99]  K Mayer,et al.  Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. , 2000, Nature.

[100]  E. Álvarez-Buylla,et al.  An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Elliot M. Meyerowitz,et al.  The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens , 1992, Cell.

[102]  M. Cotton,et al.  Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana , 1999, Nature.

[103]  J. Doyle Evolution of a Plant Homeotic Multigene Family: Toward Connecting Molecular Systematics Andmolecular Developmental Genetics , 1994 .

[104]  E. Meyerowitz Plants and the logic of development. , 1997, Genetics.

[105]  R. Dixon,et al.  Activation tagging in Arabidopsis. , 2000, Plant physiology.

[106]  S. Rounsley,et al.  Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. , 1995, The Plant cell.

[107]  J. Ellis,et al.  In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants , 1993 .

[108]  W Ansorge,et al.  Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. , 2000, Nature.

[109]  S. Carroll,et al.  Ultrabithorax function in butterfly wings and the evolution of insect wing patterns , 1999, Current Biology.

[110]  S. Hake,et al.  Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. , 1993, The Plant cell.

[111]  E. Meyerowitz,et al.  Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. , 1994, Genes & development.

[112]  E. M. Friis,et al.  The origin and early diversification of angiosperms , 1995, Nature.

[113]  Genetics and the evolution of plant form: an example from maize. , 2006, Cold Spring Harbor symposia on quantitative biology.

[114]  Hans Sommer,et al.  Ternary complex formation between the MADS‐box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus , 1999, The EMBO journal.

[115]  J. Bowman,et al.  Early flower development in Arabidopsis. , 1990, The Plant cell.

[116]  M. Van Montagu,et al.  Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. , 1994, The Plant cell.

[117]  Cindy Gustafson-Brown,et al.  Molecular characterization of the Arabidopsis floral homeotic gene APETALA1 , 1992, Nature.

[118]  Z. Schwarz‐Sommer,et al.  Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. , 2000, Science.

[119]  C. Dean,et al.  When to switch to flowering. , 1999, Annual review of cell and developmental biology.

[120]  R. Mann,et al.  Why are Hox genes clustered? , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[121]  Claire Périlleux,et al.  Mutagenesis of Plants Overexpressing CONSTANS Demonstrates Novel Interactions among Arabidopsis Flowering-Time Genes , 2000, Plant Cell.

[122]  M. Hasebe,et al.  Characterization of MADS homeotic genes in the fern Ceratopteris richardii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Hong Ma,et al.  The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors , 1990, Nature.

[124]  Yuval Eshed,et al.  SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis , 2000, Nature.

[125]  J L Bowman,et al.  Genes directing flower development in Arabidopsis. , 1989, The Plant cell.

[126]  E. Meyerowitz,et al.  AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. , 1991, Genes & development.

[127]  H. Sommer,et al.  GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. , 1992, The EMBO journal.