Sinusoidal movement of a grating across the monkey's fingerpad: temporal patterns of afferent fiber responses

Responses were recorded from cutaneous afferents innervating mechanoreceptors in the monkey's fingerpad, while gratings of alternating grooves and ridges were moved sinusoidally across their receptive fields. The gratings were specified by their spatial period and the movement by its peak speed: together these determined the peak temporal frequency at which grating ridges passed over the receptive field. During the central 42 degrees of each half cycle of movement, the speed and thus the temporal frequency of the grating ridges remained constant to within 6.6% of their peak values. In this region the responses of all afferents were phase-locked to the temporal sequence of grating ridges. The number of impulses elicited by each grating ridge was a function of the stimulus variables. For all 3 afferent classes--namely, slowly adapting afferents (SAs), rapidly adapting afferents (RAs), and Pacinian afferents (PCs)--the number of impulses per grating ridge increased as the spatial period of the grating increased (while the peak speed of movement was held constant). Similarly, for all 3 classes, the number of impulses per ridge decreased as the peak speed of movement increased (while the spatial period of the grating remained constant). When the peak temporal frequency of the grating ridges was held constant, for SAs and RAs the number of impulses per ridge increased with an increase in the spatial period of the grating and thus with an increase in the peak speed. These phase-locked responses provided information about the peak temporal frequency of the grating ridges independent of the grating spatial period and of the peak speed of movement. The shape of the response profile during a half cycle of movement was different for different afferents. Many of the RA response profiles were close to sinusoidal. The SA and PC profiles tended to have reduced peaks or raised troughs, resulting in flatter profiles. Other departures from sinusoidal profiles were also seen.

[1]  A W Goodwin,et al.  Sinusoidal movement of a grating across the monkey's fingerpad: effect of contact angle and force of the grating on afferent fiber responses , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  R. Johansson,et al.  Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements , 1982, Brain Research.

[3]  K. O. Johnson,et al.  Tactile spatial resolution. II. Neural representation of Bars, edges, and gratings in monkey primary afferents. , 1981, Journal of neurophysiology.

[4]  R. Johansson,et al.  Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. , 1979, The Journal of physiology.

[5]  J. E. Rose,et al.  Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. , 1967, Journal of neurophysiology.

[6]  E P Gardner,et al.  Sensory funneling. I. Psychophysical observations of human subjects and responses of cutaneous mechanoreceptive afferents in the cat to patterned skin stimuli. , 1972, Journal of Neurophysiology.

[7]  K. O. Johnson,et al.  Coding of incremental changes in skin temperature by a population of warm fibers in the monkey: correlation with intensity discrimination in man. , 1979, Journal of neurophysiology.

[8]  D. Ferrington,et al.  Differential contributions to coding of cutaneous vibratory information by cortical somatosensory areas I and II. , 1980, Journal of neurophysiology.

[9]  V. Mountcastle,et al.  The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. , 1968, Journal of neurophysiology.

[10]  P. O. Bishop,et al.  End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. , 1979, Journal of neurophysiology.

[11]  I. Darian‐Smith,et al.  Peripheral neural representation of the spatial frequency of a grating moving across the monkey's finger pad. , 1980, The Journal of physiology.

[12]  I. Darian‐Smith,et al.  Innervation density of mechanoreceptive fibres supplying glabrous skin of the monkey's index finger. , 1980, The Journal of physiology.

[13]  A W Goodwin,et al.  Sinusoidal movement of a grating across the monkey's fingerpad: representation of grating and movement features in afferent fiber responses , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  A. Freeman,et al.  Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model , 1982, The Journal of physiology.

[15]  V. Mountcastle,et al.  Capacities of humans and monkeys to discriminate vibratory stimuli of different frequency and amplitude: a correlation between neural events and psychological measurements. , 1975, Journal of neurophysiology.

[16]  G. Poggio,et al.  TIME SERIES ANALYSIS OF IMPULSE SEQUENCES OF THALAMIC SOMATIC SENSORY NEURONS. , 1964, Journal of neurophysiology.