On the mathematical synthesis of equational logics

We provide a mathematical theory and methodology for synthesising equa- tional logics from algebraic metatheories. We illustrate our methodology by means of two applications: a rational reconstruction of Birkhoff's Equational Logic and a new equational logic for reasoning about algebraic structure with name-binding operators.

[1]  Marcelo P. Fiore,et al.  Second-Order Algebraic Theories - (Extended Abstract) , 2010, MFCS.

[2]  Maribel Fernández,et al.  Nominal rewriting , 2007, Inf. Comput..

[3]  John Power Enriched Lawvere Theories , .

[4]  Murdoch James Gabbay,et al.  A Formal Calculus for Informal Equality with Binding , 2007, WoLLIC.

[5]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[6]  Chung-Kil Hur,et al.  Second-Order Equational Logic (Extended Abstract) , 2010, CSL.

[7]  Andrew M. Pitts,et al.  Nominal Equational Logic , 2007, Electron. Notes Theor. Comput. Sci..

[8]  Chung-Kil Hur Categorical equational systems : algebraic models and equational reasoning , 2010 .

[9]  Ian Mackie,et al.  Nominal rewriting systems , 2004, PPDP '04.

[10]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[11]  Chung-Kil Hur,et al.  Second-order equational logic , 2010, CSL 2010.

[12]  Makoto Hamana,et al.  An initial algebra approach to term rewriting systems with variable binders , 2006, High. Order Symb. Comput..

[13]  Chung-Kil Hur,et al.  Term Equational Systems and Logics: (Extended Abstract) , 2008, MFPS.

[14]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Gabbay Nominal Algebra , 2006 .

[16]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[17]  Marcelo P. Fiore,et al.  Second-Order and Dependently-Sorted Abstract Syntax , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[18]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[19]  Edmund Robinson Variations on Algebra: Monadicity and Generalisations of Equational Therories , 2002, Formal Aspects of Computing.

[20]  Makoto Hamana,et al.  Term rewriting with variable binding: an initial algebra approach , 2003, PPDP '03.

[21]  A. Burroni Algèbres graphiques (sur un concept de dimension dans les langages formels) , 1981 .

[22]  Chung-Kil Hur,et al.  On the construction of free algebras for equational systems , 2009, Theor. Comput. Sci..