Discrete and Topological Models in Molecular Biology

Theoretical tools and insights from discrete mathematics, theoretical computer science, and topology now play essential roles in our understanding of vital biomolecular processes. The related methods are now employed in various fields of mathematical biology as instruments to "zoom in" on processes at a molecular level. This book contains expository chapters on how contemporary models from discrete mathematics in domains such as algebra, combinatorics, and graph and knot theories can provide perspective on biomolecular problems ranging from data analysis, molecular and gene arrangements and structures, and knotted DNA embeddings via spatial graph models to the dynamics and kinetics of molecular interactions. The contributing authors are among the leading scientists in this field and the book is a reference for researchers in mathematics and theoretical computer science who are engaged with modeling molecular and biological phenomena using discrete methods. It may also serve as a guide and supplement for graduate courses in mathematical biology or bioinformatics, introducing nontraditional aspects of mathematical biology.

[1]  L. J. Maher,et al.  Improved quantitation of DNA curvature using ligation ladders. , 1999, Nucleic acids research.

[2]  M. Huynen,et al.  Macronuclear genome structure of the ciliate Nyctotherus ovalis: Single-gene chromosomes and tiny introns , 2008, BMC Genomics.

[3]  V S Reddy,et al.  Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. , 1998, Biophysical journal.

[4]  Dinesh Manocha,et al.  Topology preserving approximation of free configuration space , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  L. Katz,et al.  Smith ScholarWorks Smith ScholarWorks Alternative Processing of Scrambled Genes Generates Protein Alternative Processing of Scrambled Genes Generates Protein Diversity in the Ciliate Diversity in the Ciliate Chilodonella uncinata Chilodonella uncinata , 2022 .

[6]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[7]  A. Vologodskii Theoretical models of DNA topology simplification by type IIA DNA topoisomerases , 2009, Nucleic acids research.

[8]  Meera Sitharam,et al.  Robustness measure for an adeno-associated viral shell self-assembly is accurately predicted by configuration space atlasing using EASAL , 2012, BCB.

[9]  M. Karplus,et al.  Method for estimating the configurational entropy of macromolecules , 1981 .

[10]  JAMES C. Wang,et al.  Cellular roles of DNA topoisomerases: a molecular perspective , 2002, Nature Reviews Molecular Cell Biology.

[11]  E. Eichler,et al.  Programmed loss of millions of base pairs from a vertebrate genome , 2009, Proceedings of the National Academy of Sciences.

[12]  L. Katz,et al.  Structure of the micronuclear alpha-tubulin gene in the phyllopharyngean ciliate Chilodonella uncinata: implications for the evolution of chromosomal processing. , 2003, Gene.

[13]  Harshinder Singh,et al.  Nearest‐neighbor nonparametric method for estimating the configurational entropy of complex molecules , 2007, J. Comput. Chem..

[14]  M. Palumbo,et al.  In front of and behind the replication fork: bacterial type IIA topoisomerases , 2010, Cellular and Molecular Life Sciences.

[15]  L. Katz,et al.  Micronuclear and Macronuclear Forms of β‐Tubulin Genes in the Ciliate Chilodonella uncinata Reveal Insights into Genome Processing and Protein Evolution , 2007, The Journal of eukaryotic microbiology.

[16]  T. Baker,et al.  Structure of Adeno-Associated Virus Type 4 , 2005, Journal of Virology.

[17]  Jiguo Su,et al.  Uncovering the Properties of Energy-Weighted Conformation Space Networks with a Hydrophobic-Hydrophilic Model , 2009, International journal of molecular sciences.

[18]  M. Vázquez,et al.  Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. , 2005, Journal of molecular biology.

[19]  Michael K. Gilson,et al.  Theory of free energy and entropy in noncovalent binding. , 2009, Chemical reviews.

[20]  Alexandre A. Vetcher,et al.  Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. , 2010, Biophysical chemistry.

[21]  R. Kanaar,et al.  Homologous Recombination: Down to the Wire , 2004, Current Biology.

[22]  David Sankoff,et al.  Chromosome rearrangements in evolution: From gene order to genome sequence and back , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Laura F. Landweber,et al.  Why Genomes in Pieces? , 2007, Science.

[24]  A. Segall,et al.  Architectural flexibility in lambda site‐specific recombination: three alternate conformations channel the attL site into three distinct pathways , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[25]  Jun Tan,et al.  Efficient calculation of configurational entropy from molecular simulations by combining the mutual‐information expansion and nearest‐neighbor methods , 2008, J. Comput. Chem..

[26]  C. Jahn Differentiation of chromatin during DNA elimination in Euplotes crassus. , 1999, Molecular biology of the cell.

[27]  N. Cozzarelli,et al.  Analysis of the mechanism of DNA recombination using tangles , 1995, Quarterly Reviews of Biophysics.

[28]  Guido Caldarelli,et al.  Uncovering the topology of configuration space networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  John E. Johnson,et al.  Supramolecular self-assembly: molecular dynamics modeling of polyhedral shell formation , 1999 .

[30]  Tzee-Char Kuo,et al.  On Thom-Whitney stratification theory , 1978 .

[31]  James C. Wang Untangling the Double Helix: DNA Entanglement and the Action of the DNA Topoisomerases , 2009 .

[32]  R. Kanaar,et al.  Homologous recombination-mediated double-strand break repair. , 2004, DNA repair.

[33]  Ioan Andricioaei,et al.  On the calculation of entropy from covariance matrices of the atomic fluctuations , 2001 .

[34]  Meera Sitharam,et al.  Characterizing Graphs with Convex and Connected Cayley Configuration Spaces , 2010, Discret. Comput. Geom..

[35]  L. Katz,et al.  Genome architecture drives protein evolution in ciliates. , 2006, Molecular biology and evolution.

[36]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.

[37]  J W Jaraczewski,et al.  Elimination of Tec elements involves a novel excision process. , 1993, Genes & development.

[38]  B. Berger,et al.  Local rules simulation of the kinetics of virus capsid self-assembly. , 1998, Biophysical journal.

[39]  Meera Sitharam,et al.  Modeling Virus Self-Assembly Pathways: Avoiding Dynamics Using Geometric Constraint Decomposition , 2006, J. Comput. Biol..

[40]  T. Lazaridis Effective energy function for proteins in lipid membranes , 2003, Proteins.

[41]  Mariko Ariyoshi,et al.  Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. , 2004, Current opinion in structural biology.

[42]  L. Guibas,et al.  Topological methods for exploring low-density states in biomolecular folding pathways. , 2008, The Journal of chemical physics.

[43]  L. Katz,et al.  Widespread distribution of extensive chromosomal fragmentation in ciliates. , 2001, Molecular biology and evolution.

[44]  Meera Sitharam,et al.  The influence of symmetry on the probability of assembly pathways for icosahedral viral shells , 2008 .

[45]  L. Katz,et al.  Variation in Macronuclear Genome Content of Three Ciliates with Extensive Chromosomal Fragmentation: A Preliminary Analysis , 2007, The Journal of eukaryotic microbiology.

[46]  Ashley H. Hardin,et al.  Comparison of DNA decatenation by Escherichia coli topoisomerase IV and topoisomerase III: implications for non-equilibrium topology simplification , 2013, Nucleic acids research.

[47]  Alexandre A. Vetcher,et al.  DNA topology and geometry in Flp and Cre recombination. , 2006, Journal of molecular biology.

[48]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[49]  C. Baker,et al.  Genetic Consequences of Programmed Genome Rearrangement , 2012, Current Biology.

[50]  Yong Zhou,et al.  Elimination in generically rigid 3D geometric constraint systems , 2006, Algebraic Geometry and Geometric Modeling.

[51]  P. Shor,et al.  On the Mathematics of Virus Shell Assembly , 1995 .

[52]  N. Cozzarelli,et al.  Simplification of DNA topology below equilibrium values by type II topoisomerases. , 1997, Science.

[53]  Miklós Bóna,et al.  Enumeration of Viral Capsid Assembly Pathways: Tree Orbits Under Permutation Group Action , 2011, Bulletin of mathematical biology.

[54]  M. Karplus,et al.  Effective energy function for proteins in solution , 1999, Proteins.

[55]  Making Sense of Scrambled Genomes , 2008, Science.

[56]  N. Cozzarelli,et al.  Supercoiled DNA-directed knotting by T4 topoisomerase. , 1991, The Journal of biological chemistry.

[57]  L A Day,et al.  Pattern formation in icosahedral virus capsids: the papova viruses and Nudaurelia capensis beta virus. , 1993, Biophysical journal.

[58]  L. A. Nilles,et al.  Organization of the Euplotes crassus micronuclear genome. , 1988, The Journal of protozoology.

[59]  L. Klobutcher,et al.  An unusual histone H3 specific for early macronuclear development in Euplotes crassus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Local Rule Switching Mechanism for Viral Shell Geometry , 1995 .

[61]  Andre R. O. Cavalcanti,et al.  Sequencing the Oxytricha trifallax macronuclear genome: a pilot project. , 2003, Trends in genetics : TIG.

[62]  Mariel Vázquez,et al.  TangleSolve: topological analysis of site-specific recombination , 2002, Bioinform..

[63]  Michael K. Gilson,et al.  ''Mining minima'': Direct computation of conformational free energy , 1997 .

[64]  M G Rossmann,et al.  Functional implications of the structure of the murine parvovirus, minute virus of mice. , 1998, Structure.

[65]  Gregory S Chirikjian,et al.  Modeling loop entropy. , 2011, Methods in enzymology.

[66]  G. Szatmari,et al.  Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding. , 2010, FEMS microbiology letters.

[67]  R. Sinden,et al.  Structure and dynamics of supercoil-stabilized DNA cruciforms. , 1998, Journal of molecular biology.

[68]  H. Wieden,et al.  De novo cytosine methylation in the differentiating macronucleus of the stichotrichous ciliate Stylonychia lemnae. , 2003, Nucleic acids research.

[69]  F. Crick,et al.  Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. , 1993, The American journal of psychiatry.

[70]  D. Sherratt,et al.  Site-specific recombination by Tn3 resolvase: Topological changes in the forward and reverse reactions , 1989, Cell.

[71]  D. S. Gross,et al.  Nuclease hypersensitive sites in chromatin. , 1988, Annual review of biochemistry.

[72]  G. Sarkis,et al.  A model for the gamma delta resolvase synaptic complex. , 2001, Molecular cell.

[73]  Bruce Tidor,et al.  Efficient calculation of molecular configurational entropies using an information theoretic approximation. , 2012, The journal of physical chemistry. B.

[74]  Michael K Gilson,et al.  Extraction of configurational entropy from molecular simulations via an expansion approximation. , 2007, The Journal of chemical physics.

[75]  J. Rowley,et al.  The Cart Before the Horse , 2008, Science.

[76]  J. Sklar,et al.  A Neoplastic Gene Fusion Mimics Trans-Splicing of RNAs in Normal Human Cells , 2008, Science.

[77]  A. Stasiak,et al.  DNA supercoiling and its role in DNA decatenation and unknotting , 2009, Nucleic acids research.

[78]  J. Little,et al.  Interactive topological drawing , 1998 .