The REGγ proteasome regulates hepatic lipid metabolism through inhibition of autophagy.

[1]  S. Jung,et al.  Site-specific Acetylation of the Proteasome Activator REGγ Directs Its Heptameric Structure and Functions* , 2013, The Journal of Biological Chemistry.

[2]  S. Kaneko,et al.  Proteasome Dysfunction Mediates Obesity-Induced Endoplasmic Reticulum Stress and Insulin Resistance in the Liver , 2013, Diabetes.

[3]  D. Accili,et al.  Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Pparγ , 2012, Cell.

[4]  N. Danial,et al.  Polysome Profiling in Liver Identifies Dynamic Regulation of Endoplasmic Reticulum Translatome by Obesity and Fasting , 2012, PLoS genetics.

[5]  B. Bay,et al.  Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. , 2012, The Journal of clinical investigation.

[6]  Qinxi Li,et al.  GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy , 2012, Science.

[7]  Li Yu,et al.  Function and Molecular Mechanism of Acetylation in Autophagy Regulation , 2012, Science.

[8]  Yongping Cui,et al.  Roles of Kruppel-associated Box (KRAB)-associated Co-repressor KAP1 Ser-473 Phosphorylation in DNA Damage Response* , 2012, The Journal of Biological Chemistry.

[9]  A. Cuervo,et al.  Lipophagy: Connecting Autophagy and Lipid Metabolism , 2012, International journal of cell biology.

[10]  Jingxia Wu,et al.  Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis[S] , 2012, Journal of Lipid Research.

[11]  Jianping Ye,et al.  Sirtuin 1 (SIRT1) Protein Degradation in Response to Persistent c-Jun N-terminal Kinase 1 (JNK1) Activation Contributes to Hepatic Steatosis in Obesity* , 2011, The Journal of Biological Chemistry.

[12]  R. de Cabo,et al.  Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein* , 2011, The Journal of Biological Chemistry.

[13]  Lee H. Dicker,et al.  Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity , 2011, Nature.

[14]  Shanlou Qiao,et al.  REGγ modulates p53 activity by regulating its cellular localization , 2010, Journal of Cell Science.

[15]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[16]  Ping Li,et al.  Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. , 2010, Cell metabolism.

[17]  M. Czaja Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications. , 2010, American journal of physiology. Cell physiology.

[18]  R. de Cabo,et al.  JNK1 Phosphorylates SIRT1 and Promotes Its Enzymatic Activity , 2009, PloS one.

[19]  M. Komatsu,et al.  Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis , 2009, Proceedings of the National Academy of Sciences.

[20]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[21]  Qing Xu,et al.  Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. , 2009, Cell metabolism.

[22]  In Hye Lee,et al.  Regulation of Autophagy by the p300 Acetyltransferase* , 2009, Journal of Biological Chemistry.

[23]  D. Rubinsztein,et al.  Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates , 2009, Molecular cell.

[24]  P. Pfluger,et al.  Sirt1 protects against high-fat diet-induced metabolic damage , 2008, Proceedings of the National Academy of Sciences.

[25]  Nicholas E. Bruns,et al.  A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy , 2008, Proceedings of the National Academy of Sciences.

[26]  J. Qin,et al.  Negative regulation of the deacetylase SIRT1 by DBC1 , 2008, Nature.

[27]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[28]  J. Yao,et al.  Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss) , 2007, BMC Genomics.

[29]  D. Stolz,et al.  Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. , 2007, The American journal of pathology.

[30]  B. O’Malley,et al.  Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. , 2007, Molecular cell.

[31]  D. Stolz,et al.  Differential Effects of Endoplasmic Reticulum Stress-induced Autophagy on Cell Survival* , 2007, Journal of Biological Chemistry.

[32]  W. Gu,et al.  Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage , 2006, Nature Cell Biology.

[33]  A. Malovannaya,et al.  The SRC-3/AIB1 Coactivator Is Degraded in a Ubiquitin- and ATP-Independent Manner by the REGγ Proteasome , 2006, Cell.

[34]  S. Baylin,et al.  Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses , 2005, Cell.

[35]  S. Nemoto,et al.  Nutrient Availability Regulates SIRT1 Through a Forkhead-Dependent Pathway , 2004, Science.

[36]  R. Gottlieb Autophagy in Health and Disease , 2004, Science.

[37]  L. Guarente,et al.  corrigendum: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ , 2004, Nature.

[38]  Namjin Chung,et al.  Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ , 2004, Nature.

[39]  Steven P. Gygi,et al.  Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase , 2004, Science.

[40]  Lance F. Barton,et al.  Immune Defects in 28-kDa Proteasome Activator γ-Deficient Mice1 , 2004, The Journal of Immunology.

[41]  Delin Chen,et al.  Negative Control of p53 by Sir2α Promotes Cell Survival under Stress , 2001, Cell.

[42]  L. Guarente,et al.  Sir2 links chromatin silencing, metabolism, and aging. , 2000, Genes & development.

[43]  M. Kasahara,et al.  Growth Retardation in Mice Lacking the Proteasome Activator PA28γ* , 1999, The Journal of Biological Chemistry.

[44]  C. Wójcik Proteasome activator subunit PA28α and related Ki antigen (PA28γ) are absent from the nuclear fraction purified by sucrose gradient centrifugation , 1999 .

[45]  K. Ferrell,et al.  Purification of an 11 S regulator of the multicatalytic protease. , 1992, The Journal of biological chemistry.

[46]  C. Slaughter,et al.  Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). , 1992, The Journal of biological chemistry.

[47]  Lance F. Barton,et al.  Immune defects in 28-kDa proteasome activator gamma-deficient mice. , 2004, Journal of immunology.

[48]  L. Guarente,et al.  Negative control of p53 by Sir2alpha promotes cell survival under stress. , 2001, Cell.

[49]  C. Wójcik Proteasome activator subunit PA28 alpha and related Ki antigen (PA28 gamma) are absent from the nuclear fraction purified by sucrose gradient centrifugation. , 1999, International Journal of Biochemistry and Cell Biology.