Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework

The breathing behavior of the MIL-53(Cr) metal–organic framework (MOF) has been explored previously upon guest-adsorption and thermal and mechanical stimuli. Here, advanced molecular simulations based on the use of an accurate force field to describe the flexibility of this porous framework demonstrate that the application of an electrical field induces the structural switching of this MOF leading to a first-order transition and a volume change of more than 40%. This motivated us to electrically tune the pore size of MIL-53(Cr) with the idea to propose a new concept to selectively capture CO2 over CH4 via a molecular sieving that paves the way toward the optimization of current separation-based processes.

[1]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[2]  U. Müller,et al.  The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications , 2012 .

[3]  Rainer Herges,et al.  The first porous MOF with photoswitchable linker molecules. , 2011, Dalton transactions.

[4]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[5]  Bryana L. Henderson,et al.  Photophysical pore control in an azobenzene-containing metal–organic framework , 2013 .

[6]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[7]  A. Ghoufi,et al.  Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr). , 2008, Angewandte Chemie.

[8]  A. Fuchs,et al.  The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption , 2010, 1904.11921.

[9]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[10]  A. Ghoufi,et al.  Physics Behind the Guest-Assisted Structural Transitions of a Porous Metal−Organic Framework Material , 2010 .

[11]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[12]  Chih-Hung Huang,et al.  A Review of CO2 Capture by Absorption and Adsorption , 2012 .

[13]  C. Serre,et al.  Mechanical energy storage performance of an aluminum fumarate metal–organic framework† †Electronic supplementary information (ESI) available: Experimental procedures, X-ray diffraction, and molecular simulation. See DOI: 10.1039/c5sc02794b , 2015, Chemical science.

[14]  Wu Xu,et al.  An Electrically Switchable Metal-Organic Framework , 2014, Scientific Reports.

[15]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[16]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[17]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[18]  A. Ghoufi,et al.  Comparative guest, thermal, and mechanical breathing of the porous metal organic framework MIL-53(Cr): A computational exploration supported by experiments , 2012 .

[19]  K. Lu,et al.  Metal–Organic Frameworks: New Interlayer Dielectric Materials , 2015 .

[20]  S. Kaskel,et al.  Tolerance of Flexible MOFs toward Repeated Adsorption Stress. , 2015, ACS applied materials & interfaces.

[21]  A. Ghoufi,et al.  Hybrid Monte Carlo Simulations Combined with a Phase Mixture Model to Predict the Structural Transitions of a Porous Metal−Organic Framework Material upon Adsorption of Guest Molecules , 2010 .

[22]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[23]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[24]  Masafumi Inoue,et al.  Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. , 2012, Journal of the American Chemical Society.

[25]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[26]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[27]  Isabelle Beurroies,et al.  The direct heat measurement of mechanical energy storage metal-organic frameworks. , 2015, Angewandte Chemie.

[28]  Carlos A. Grande,et al.  Electric Swing Adsorption for Gas Separation and Purification: A Review , 2013 .

[29]  Craig M. Brown,et al.  Methane storage in flexible metal–organic frameworks with intrinsic thermal management , 2015, Nature.

[30]  C. Serre,et al.  Metal-organic frameworks as potential shock absorbers: the case of the highly flexible MIL-53(Al). , 2014, Chemical communications.

[31]  A. Ghoufi,et al.  Guest dependent pressure behavior of the flexible MIL-53(Cr): a computational exploration. , 2012, Dalton transactions.

[32]  François-Xavier Coudert,et al.  Mechanism of Breathing Transitions in Metal–Organic Frameworks , 2011 .