Gain scheduled controller design for thermo-optical plant

This paper presents a gain scheduled controller design for MIMO and SISO systems in the frequency domain using the genetic algorithms approach. The proposed method is derived from the M-delta structure of closed loop MIMO (SISO) systems and the small gain theory is exploited to obtain the stability condition. An example of real system illustrates the effectiveness of the proposed output feedback gain scheduled controller design method and also the possibility to improve its performance using the genetic algorithm.

[1]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[2]  Pedro L. D. Peres,et al.  State feedback gain scheduling for linear systems with time-varying parameters , 2004 .

[3]  Hector Budman,et al.  Design of robust gain-scheduled PI controllers for nonlinear processes , 2005 .

[4]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[5]  V. Balakrishnan,et al.  Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  Vojtech Veselý,et al.  Decentralized Gain-scheduling Controller Design: Polytopic System Approach , 2013 .

[7]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[8]  Fenguangzhai Song CD , 1992 .

[9]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[10]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[11]  Masami Saeki,et al.  An LMI based scheduling algorithm for constrained stabilization problems , 2008, Syst. Control. Lett..

[12]  B Hencey,et al.  Robust gain-scheduled control , 2010, Proceedings of the 2010 American Control Conference.

[13]  Greg E. Stewart,et al.  A Pragmatic Approach to Robust Gain Scheduling , 2012, ROCOND.

[14]  Mario Sznaier Receding horizon: an easy way to improve performance in LPV systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Alireza Karimi,et al.  Robust and Gain-Scheduled PID Controller Design for Condensing Boilers by Linear Programming , 2012 .

[17]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[18]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[19]  Fan Wang,et al.  Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems , 2002, IEEE Trans. Autom. Control..

[20]  Daniel R. Lewin EVOLUTIONARY ALGORITHMS IN CONTROL SYSTEM ENGINEERING , 2005 .

[21]  Jakob Stoustrup,et al.  Structured control of affine linear parameter varying systems , 2011, Proceedings of the 2011 American Control Conference.

[22]  Masayuki Sato,et al.  Gain-scheduled output-feedback controllers depending solely on scheduling parameters via parameter-dependent Lyapunov functions , 2011, Autom..

[23]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[26]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..