Simulation of radiating CO2-N2 shock layer experiments at hyperbolic entry conditions

Numerical simulations supporting radiating shock layer experiments with a CO2 – N2 test gas in the X2 free-piston impulse facility are presented. A ueq = 9.7 km/s, 1L = 5.4×10−5 kg/m2 expansion tunnel condition and a u1 = 8.5 km/s, 1 = 2.35×10−4 kg/m3 shock tube condition are investigated. Shock layer simulations with the Euler equations, a two-temperature thermal model and coupled nonequilibrium radiation are compared with radiant intensity and temperature profiles derived from emission spectroscopy measurements of the CN Violet band system. Applying the CO2 – N2 reaction scheme modifications proposed by Lee, Park and Chang1 and omitting translation-electron energy exchange is found to give the closest agreement with calibrated intensity measurements.

[1]  C. Park,et al.  Nonequilibrium Air Radiation (NEQAIR) Program , 1985 .

[2]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[3]  Peter A. Jacobs Shock Tube Modelling With L1d , 1998 .

[4]  J. P. Appleton,et al.  The conservation equations for a non-equilibrium plasma , 1964, Journal of Fluid Mechanics.

[5]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[6]  C. Laux,et al.  Optical Diagnostics and Radiative Emission of Air Plasmas , 1993 .

[7]  Peter A. Jacobs,et al.  Simulation of CO2-N2 Expansion Tunnel Flows for the Study of Radiating Shock Layers , 2008 .

[8]  S. Langhoff,et al.  Theoretical study of the dissociation energy and the red and violet band systems of CN , 1988 .

[9]  J. Nealy An experimental study of ultraviolet radiation behind incident normal shock waves in CO2 at Venusian entry speeds , 1975 .

[10]  Peter A. Jacobs MB_CNS: A Computer Program for the Simulation of Transient Compressible Flows , 1996 .

[11]  Lin Hartung Chambers,et al.  Predicting radiative heat transfer in thermochemical nonequilibrium flow fields. Theory and user's manual for the LORAN code , 1994 .

[12]  V. Krasnopolsky,et al.  Chemical composition of the atmosphere of Venus , 1981, Nature.

[13]  D. Giordano Impact of the Born-Oppenheimer Approximation on Aerothermodynamics , 2007 .

[14]  Wolfgang L. Wiese A new reference data table for carbon, nitrogen and oxygen spectra , 1996 .

[15]  Tahir Gokcen,et al.  N2-CH4-Ar Chemical Kinetic Model for Simulations of Atmospheric Entry to Titan , 2004 .

[16]  A. Nier,et al.  Composition and Structure of the Martian Atmosphere: Preliminary Results from Viking 1 , 1976, Science.

[17]  P. Gnoffo Planetary-Entry Gas Dynamics , 1999 .

[18]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[19]  J. J. Olivero,et al.  Empirical fits to the Voigt line width: A brief review , 1977 .

[20]  Nonequilibrium Ionization Behind a Strong Shock Wave in the Mars Atmosphere , 2000 .

[21]  J. Arnold,et al.  Studies of shock-layer radiation of bodies entering planetary atmospheres. , 1965 .

[22]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[23]  Michael Paul Scott Development and Modelling of Expansion Tubes , 2007 .

[24]  P. Boubert,et al.  Nonequilibrium radiation behind a strong shock wave in CO2–N2 , 2007 .

[25]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[26]  W. Nicolet Advanced methods for calculating radiation transport in ablation-product contaminated boundary layers , 1970 .

[27]  Ellis E. Whiting,et al.  An empirical approximation to the Voigt profile , 1968 .

[28]  J. W. Gallagher,et al.  Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions , 1993 .

[29]  Harold Mirels,et al.  TEST TIME IN LOW PRESSURE SHOCK TUBES , 1963 .

[30]  Eun-Seok Lee,et al.  Shock-Tube Determination of CN Formation Rate in a CO-N2 Mixture , 2007 .

[31]  W. C. Martin,et al.  The New NIST Atomic Spectra Database , 1999 .

[32]  S. A. Losev,et al.  Relaxation Processes in Shock Waves , 1967 .

[33]  Analysis of Communications Blackout for Pioneer Venus Entry Probes , 1975 .

[34]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[35]  Richard W. Powell,et al.  The effect of interplanetary trajectory options on a manned Mars aerobrake configuration , 1990 .

[36]  S. Surzhikov,et al.  Kinetics and nonequilibrium radiation of CO2-N2 shock waves , 2001 .

[37]  James O. Arnold,et al.  Line by line calculation of spectra from diatomic molecules and atoms assuming a voigt line profile , 1969 .

[38]  J. P. Appleton,et al.  Shock‐Tube Study of Carbon Monoxide Dissociation Using Vacuum‐Ultraviolet Absorption , 1970 .

[39]  Rowan J. Gollan,et al.  Yet another finite-rate chemistry module for compressible flow codes , 2003 .

[40]  S. A. Losev,et al.  Radiation excited by shock waves in a CO2-N2-Ar mixture: Experiment and theory , 2001 .

[41]  Wing Tsang,et al.  Chemical Kinetic Data Base for Propellant Combustion I. Reactions Involving NO, NO2, HNO, HNO2, HCN and N2O , 1991 .