Fast visual object tracking via distortion-suppressed correlation filtering

Visual object tracking is a basic research unit in the construction of smart cities, it focuses on establishing a dynamic appearance model to represent the target in complex scenarios. In this paper, a distortion-suppressed correlation filtering based tracking method (DSCFT) is proposed. Our approach tackles distortions caused by spatial similarity comparison and temporal appearance updating. We establish our method under a Bayesian framework, where spatial and temporal appearance are embedded in likelihood and prior respectively. Firstly, The spatial distortion is handled by modifying weight windows and utilizing a proposal selection strategy to better track targets under fast motion and background clutters. Secondly, temporal information is retained in updating stage as a prior to represent dynamic variations of the target. Moreover, a multi-scale filtering scheme is integrated when updating the temporal appearance to boost the scale sensitivity. Experimental results dedicate the effectiveness and robustness of our DSCFT on benchmark videos.

[1]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[2]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[3]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[4]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[5]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[11]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[12]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[14]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[17]  Bin Shen,et al.  Online robust image alignment via iterative convex optimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[19]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[21]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.