Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material.
暂无分享,去创建一个
Angela S. Wochnik | W. Schnick | P. Schmidt | D. Wiechert | C. Scheu | P. Pust | V. Weiler | C. Hecht | A. Tuecks | A. Wochnik | A. Henß
[1] W. Schnick,et al. Highly Efficient pc-LED Phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) - Crystal Structures and Luminescence Properties Revisited , 2014 .
[2] P. Dorenbos. A Review on How Lanthanide Impurity Levels Change with Chemistry and Structure of Inorganic Compounds , 2013 .
[3] W. Schnick,et al. LiCa3Si2N5 – A Lithium Nitridosilicate with a [Si2N5]7– Double‐Chain , 2012 .
[4] I. D. Baere,et al. Mechanoluminescence in BaSi2O2N2:Eu , 2012 .
[5] W. Schnick,et al. Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity , 2011 .
[6] Haiyong Ni,et al. Electronic structure and linear optical property of BaSi2N2O2 crystal , 2011 .
[7] W. Schnick,et al. Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. , 2011, Angewandte Chemie.
[8] Chun Che Lin,et al. Advances in Phosphors for Light-emitting Diodes. , 2011, The journal of physical chemistry letters.
[9] Y. Ma,et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties , 2010 .
[10] W. Schnick,et al. Li2CaSi2N4 and Li2SrSi2N4 – a Synthetic Approach to Three‐Dimensional Lithium Nitridosilicates , 2010 .
[11] K. Machida,et al. Preparation and Luminescence Properties of Single-Phase BaSi2O2N2 : Eu2 + , a Bluish-Green Phosphor for White Light-Emitting Diodes , 2010 .
[12] R. Xie,et al. Rare‐Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications , 2010 .
[13] R. Xie,et al. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications , 2010, Materials.
[14] Xianghong He,et al. Dependence of luminescence properties on composition of rare-earth activated (oxy)nitrides phosphors for white-LEDs applications , 2009 .
[15] F. Stadler,et al. Structure Elucidation of BaSi2O2N2 — A Host Lattice for Rare‐Earth Doped Luminescent Materials in Phosphor‐Converted (pc)‐LEDs. , 2009 .
[16] H. Höppe,et al. Recent developments in the field of inorganic phosphors. , 2009, Angewandte Chemie.
[17] W. Schnick,et al. Single-Crystal Structure Determination and Solid-State NMR Investigations of Lithium Nitridosilicate Li2SiN2 Synthesized by a Precursor Approach Employing Amorphous “Si(CN2)2” , 2009 .
[18] N. Kijima,et al. New phosphors for white LEDs: Material Design Concepts , 2009 .
[19] Anant Achyut Setlur,et al. Phosphors for LED-based Solid-State Lighting , 2009 .
[20] G. Sheldrick. A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[21] M. Craford,et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.
[22] P. Moreau,et al. Determination of Lithium Insertion Sites in LixTiP4 (x = 2−11) by Electron Energy-Loss Spectroscopy , 2007 .
[23] R. Xie,et al. Silicon-based oxynitride and nitride phosphors for white LEDs—A review , 2007 .
[24] N. Hirosaki,et al. Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode , 2006 .
[25] J. Steen,et al. Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors , 2006 .
[26] N. Hirosaki,et al. Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2 + , for White Light-Emitting Diodes , 2006 .
[27] Yi Qun Li,et al. Luminescence Properties of Eu2+‐Activated Alkaline‐Earth Silicon‐Oxynitride MSi2O2‐δN2+2/3δ (M: Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors. , 2005 .
[28] F. Stadler,et al. Highly efficient all‐nitride phosphor‐converted white light emitting diode , 2005 .
[29] Htjm Bert Hintzen,et al. Luminescence properties of Eu2+ - activated alkaline-earth silicon-oxynitride MSi2O2-deltaN2+2/3delta (M = Ca, Sr, Ba) : A promising class of novel LED conversion phosphors , 2005 .
[30] P. Granger,et al. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. , 2002, Solid state nuclear magnetic resonance.
[31] Michael R. Krames,et al. High-power phosphor-converted light-emitting diodes based on III-Nitrides , 2002 .
[32] Robin K. Harris,et al. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts—IUPAC Recommendations , 2002 .
[33] P. Dorenbos. Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity , 2002 .
[34] P. Dorenbos. 5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes , 2001 .
[35] P. Granger,et al. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts(IUPAC Recommendations 2001) , 2001 .
[36] P. Granger,et al. Nuclear Spin Properties and Conventions for Chemical Shifts (IUPAC Recommendations 2001 ) , 2007 .
[37] P. Dorenbos. 5d-level energies of Ce 3¿ and the crystalline environment. I. Fluoride compounds , 2000 .
[38] H. Höppe,et al. Luminescence in Eu 2+ -doped Ba 2 Si 5 N 8 : fluorescence, thermoluminescence, and upconversion , 2000 .
[39] Regina Mueller-Mach,et al. White-light-emitting diodes for illumination , 2000, Photonics West - Optoelectronic Materials and Devices.
[40] Shuji Nakamura,et al. Present performance of InGaN-based blue/green/yellow LEDs , 1997, Photonics West.
[41] P. Schlotter,et al. Luminescence conversion of blue light emitting diodes , 1997 .
[42] Shuji Nakamura,et al. The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .
[43] L. Reimer. Electron Energy‐Loss Spectroscopy in the Electron Microscope , 1997 .
[44] R. Egerton,et al. Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.
[45] Nobuhiko Yamashita,et al. Photoluminescence Spectra of Eu2+ Centers in Ca(S, Se):Eu and Sr(S, Se):Eu , 1995 .
[46] W. Schnick,et al. Nitrido‐silicate. II [1]. Hochtemperatur‐Synthesen und Kristallstrukturen von Sr2Si5N8 und Ba2Si5N8 , 1995 .
[47] C. Scheu,et al. Electron Energy-Loss Near-Edge Structure of Metal-Alumina Interfaces , 1995 .
[48] G. Blasse,et al. Luminescence in the pentaborate LiBa2B5O10 , 1991 .
[49] A. Meijerink,et al. Luminescence properties of Eu2+-activated alkaline earth haloborates , 1989 .
[50] B. Henderson,et al. Optical spectroscopy of inorganic solids , 1989 .
[51] R. Hoppe,et al. Ein neues Oxoplumbat (IV): CsNa3[PbO4] [1] , 1987 .
[52] F. Liebau. Structural chemistry of silicates , 1985 .
[53] D. Robbins. The Effects of Crystal Field and Temperature on the Photoluminescence Excitation Efficiency of Ce3+ in YAG , 1979 .
[54] J. J. Vos. Colorimetric and photometric properties of a 2° fundamental observer , 1978 .
[55] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[56] C. Macneill. Material design concepts for urban transport aircraft , 1968 .
[57] D. L. Macadam. Visual Sensitivities to Color Differences in Daylight , 1942 .