Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material.

[1]  W. Schnick,et al.  Highly Efficient pc-LED Phosphors Sr1-xBaxSi2O2N2:Eu2+ (0 x 1) - Crystal Structures and Luminescence Properties Revisited , 2014 .

[2]  P. Dorenbos A Review on How Lanthanide Impurity Levels Change with Chemistry and Structure of Inorganic Compounds , 2013 .

[3]  W. Schnick,et al.  LiCa3Si2N5 – A Lithium Nitridosilicate with a [Si2N5]7– Double‐Chain , 2012 .

[4]  I. D. Baere,et al.  Mechanoluminescence in BaSi2O2N2:Eu , 2012 .

[5]  W. Schnick,et al.  Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity , 2011 .

[6]  Haiyong Ni,et al.  Electronic structure and linear optical property of BaSi2N2O2 crystal , 2011 .

[7]  W. Schnick,et al.  Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. , 2011, Angewandte Chemie.

[8]  Chun Che Lin,et al.  Advances in Phosphors for Light-emitting Diodes. , 2011, The journal of physical chemistry letters.

[9]  Y. Ma,et al.  Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties , 2010 .

[10]  W. Schnick,et al.  Li2CaSi2N4 and Li2SrSi2N4 – a Synthetic Approach to Three‐Dimensional Lithium Nitridosilicates , 2010 .

[11]  K. Machida,et al.  Preparation and Luminescence Properties of Single-Phase BaSi2O2N2 : Eu2 + , a Bluish-Green Phosphor for White Light-Emitting Diodes , 2010 .

[12]  R. Xie,et al.  Rare‐Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications , 2010 .

[13]  R. Xie,et al.  Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications , 2010, Materials.

[14]  Xianghong He,et al.  Dependence of luminescence properties on composition of rare-earth activated (oxy)nitrides phosphors for white-LEDs applications , 2009 .

[15]  F. Stadler,et al.  Structure Elucidation of BaSi2O2N2 — A Host Lattice for Rare‐Earth Doped Luminescent Materials in Phosphor‐Converted (pc)‐LEDs. , 2009 .

[16]  H. Höppe,et al.  Recent developments in the field of inorganic phosphors. , 2009, Angewandte Chemie.

[17]  W. Schnick,et al.  Single-Crystal Structure Determination and Solid-State NMR Investigations of Lithium Nitridosilicate Li2SiN2 Synthesized by a Precursor Approach Employing Amorphous “Si(CN2)2” , 2009 .

[18]  N. Kijima,et al.  New phosphors for white LEDs: Material Design Concepts , 2009 .

[19]  Anant Achyut Setlur,et al.  Phosphors for LED-based Solid-State Lighting , 2009 .

[20]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[21]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[22]  P. Moreau,et al.  Determination of Lithium Insertion Sites in LixTiP4 (x = 2−11) by Electron Energy-Loss Spectroscopy , 2007 .

[23]  R. Xie,et al.  Silicon-based oxynitride and nitride phosphors for white LEDs—A review , 2007 .

[24]  N. Hirosaki,et al.  Host lattice materials in the system Ca3N2–AlN–Si3N4 for white light emitting diode , 2006 .

[25]  J. Steen,et al.  Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors , 2006 .

[26]  N. Hirosaki,et al.  Luminescence Properties of a Red Phosphor, CaAlSiN3 : Eu2 + , for White Light-Emitting Diodes , 2006 .

[27]  Yi Qun Li,et al.  Luminescence Properties of Eu2+‐Activated Alkaline‐Earth Silicon‐Oxynitride MSi2O2‐δN2+2/3δ (M: Ca, Sr, Ba): A Promising Class of Novel LED Conversion Phosphors. , 2005 .

[28]  F. Stadler,et al.  Highly efficient all‐nitride phosphor‐converted white light emitting diode , 2005 .

[29]  Htjm Bert Hintzen,et al.  Luminescence properties of Eu2+ - activated alkaline-earth silicon-oxynitride MSi2O2-deltaN2+2/3delta (M = Ca, Sr, Ba) : A promising class of novel LED conversion phosphors , 2005 .

[30]  P. Granger,et al.  NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. , 2002, Solid state nuclear magnetic resonance.

[31]  Michael R. Krames,et al.  High-power phosphor-converted light-emitting diodes based on III-Nitrides , 2002 .

[32]  Robin K. Harris,et al.  NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts—IUPAC Recommendations , 2002 .

[33]  P. Dorenbos Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity , 2002 .

[34]  P. Dorenbos 5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes , 2001 .

[35]  P. Granger,et al.  NMR nomenclature. Nuclear spin properties and conventions for chemical shifts(IUPAC Recommendations 2001) , 2001 .

[36]  P. Granger,et al.  Nuclear Spin Properties and Conventions for Chemical Shifts (IUPAC Recommendations 2001 ) , 2007 .

[37]  P. Dorenbos 5d-level energies of Ce 3¿ and the crystalline environment. I. Fluoride compounds , 2000 .

[38]  H. Höppe,et al.  Luminescence in Eu 2+ -doped Ba 2 Si 5 N 8 : fluorescence, thermoluminescence, and upconversion , 2000 .

[39]  Regina Mueller-Mach,et al.  White-light-emitting diodes for illumination , 2000, Photonics West - Optoelectronic Materials and Devices.

[40]  Shuji Nakamura,et al.  Present performance of InGaN-based blue/green/yellow LEDs , 1997, Photonics West.

[41]  P. Schlotter,et al.  Luminescence conversion of blue light emitting diodes , 1997 .

[42]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[43]  L. Reimer Electron Energy‐Loss Spectroscopy in the Electron Microscope , 1997 .

[44]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[45]  Nobuhiko Yamashita,et al.  Photoluminescence Spectra of Eu2+ Centers in Ca(S, Se):Eu and Sr(S, Se):Eu , 1995 .

[46]  W. Schnick,et al.  Nitrido‐silicate. II [1]. Hochtemperatur‐Synthesen und Kristallstrukturen von Sr2Si5N8 und Ba2Si5N8 , 1995 .

[47]  C. Scheu,et al.  Electron Energy-Loss Near-Edge Structure of Metal-Alumina Interfaces , 1995 .

[48]  G. Blasse,et al.  Luminescence in the pentaborate LiBa2B5O10 , 1991 .

[49]  A. Meijerink,et al.  Luminescence properties of Eu2+-activated alkaline earth haloborates , 1989 .

[50]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[51]  R. Hoppe,et al.  Ein neues Oxoplumbat (IV): CsNa3[PbO4] [1] , 1987 .

[52]  F. Liebau Structural chemistry of silicates , 1985 .

[53]  D. Robbins The Effects of Crystal Field and Temperature on the Photoluminescence Excitation Efficiency of Ce3+ in YAG , 1979 .

[54]  J. J. Vos Colorimetric and photometric properties of a 2° fundamental observer , 1978 .

[55]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[56]  C. Macneill Material design concepts for urban transport aircraft , 1968 .

[57]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .