A Multifunctional Molecular Bridging Layer for High Efficiency, Hysteresis‐Free, and Stable Perovskite Solar Cells

[1]  Yang Zhao,et al.  Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules , 2023, Science.

[2]  W. Li,et al.  Boosting Perovskite Solar Cells Efficiency and Stability: Interfacial Passivation of Crosslinked Fullerene Eliminates the “Burn‐in” Decay , 2022, Advanced materials.

[3]  Han Chen,et al.  Transporting holes stably under iodide invasion in efficient perovskite solar cells , 2022, Science.

[4]  Xuesu Xiao,et al.  Uniform Lithium Deposition Achieved by SnO2/Hydroxypropyl Methyl Cellulose Composite Separator toward Ultrastable Lithium Metal Batteries , 2022, ACS Applied Energy Materials.

[5]  Lixiu Zhang,et al.  Modifying SnO2 with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells. , 2022, ACS applied materials & interfaces.

[6]  Li Yang,et al.  Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells , 2022, Cell Reports Physical Science.

[7]  Fuzhi Huang,et al.  Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells , 2022, Advanced Energy Materials.

[8]  Lixiu Zhang,et al.  Star perovskite materials , 2022, Journal of Semiconductors.

[9]  C. Brabec,et al.  Molecular Doping of a Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells , 2022, Chemistry of Materials.

[10]  Chong Chen,et al.  π‐Conjugated Small Molecules Modified SnO2 Layer for Perovskite Solar Cells with over 23% Efficiency , 2021, Advanced Energy Materials.

[11]  Yanbin Shen,et al.  Self-Assembled Monolayers for Batteries. , 2021, Journal of the American Chemical Society.

[12]  S. Zakeeruddin,et al.  Dopant Engineering for Spiro‐OMeTAD Hole‐Transporting Materials towards Efficient Perovskite Solar Cells , 2021, Advanced Functional Materials.

[13]  Y. Qi,et al.  Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability , 2021, Science.

[14]  Jinsong Huang,et al.  Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells , 2021, Nature Sustainability.

[15]  Thomas G. Allen,et al.  Tin Oxide Electron‐Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells , 2021, Advanced materials.

[16]  U. Rau,et al.  Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells , 2021, Advanced Energy Materials.

[17]  K. Catchpole,et al.  Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells , 2021, Science.

[18]  Yongbo Yuan,et al.  Ion migration in perovskite solar cells , 2021 .

[19]  Donghai Wang,et al.  Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface , 2020 .

[20]  Cheng Mu,et al.  Choline Chloride-Modified SnO2 Achieving High Output Voltage in MAPbI3 Perovskite Solar Cells , 2020 .

[21]  S. Harvey,et al.  Inhomogeneous Doping of Perovskite Materials by Dopants from Hole-Transport Layer , 2020 .

[22]  Jie Zhang,et al.  Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23% , 2020, Advanced materials.

[23]  Jihuai Wu,et al.  Regulation of Interfacial Charge Transfer and Recombination for Efficient Planar Perovskite Solar Cells , 2020, Solar RRL.

[24]  Jianyang Li,et al.  Improving and Stabilizing Perovskite Solar Cells with Incorporation of Graphene in the Spiro-OMeTAD Layer: Suppressed Li Ions Migration and Improved Charge Extraction , 2020 .

[25]  Jia Zhu,et al.  Simultaneous Contact and Grain‐Boundary Passivation in Planar Perovskite Solar Cells Using SnO2‐KCl Composite Electron Transport Layer , 2019, Advanced Energy Materials.

[26]  N. Park,et al.  Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells , 2019, Advanced materials.

[27]  Vincent M. Le Corre,et al.  Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness , 2019, ACS Applied Energy Materials.

[28]  Z. Yin,et al.  Surface passivation of perovskite film for efficient solar cells , 2019, Nature Photonics.

[29]  N. Park,et al.  On the Current–Voltage Hysteresis in Perovskite Solar Cells: Dependence on Perovskite Composition and Methods to Remove Hysteresis , 2019, Advanced materials.

[30]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.

[31]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[32]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[33]  Xingzhong Zhao,et al.  Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells , 2017 .

[34]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[35]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[36]  Jie Li,et al.  Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles , 2016 .

[37]  Yanhong Luo,et al.  Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells , 2015 .

[38]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[39]  Y. Qi,et al.  Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films , 2015 .

[40]  H. Ågren,et al.  AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells. , 2014, ChemSusChem.

[41]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[42]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[43]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[44]  John R. Van Wazer,et al.  Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates , 1973 .

[45]  C. Nordling,et al.  Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure , 1970 .