Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222

We constrain the physical nature of dark matter using the newly identified massive merging galaxy cluster MACS J0025.4−1222. As was previously shown by the example of the Bullet Cluster (1E065756), such systems are ideal laboratories for detecting isolated dark matter, and distinguishing between cold dark matter (CDM) and other scenarios (e.g. self-interacting dark matter, alternative gravity theories). MACS J0025.4−1222 consists of two merging subclusters of similar richness at z = 0.586. We measure the distribution of X-ray emitting gas from Chandra X-ray data and find it to be clearly displaced from the distribution of galaxies. A strong (information from highly distorted arcs) and weak (using weakly distorted background galaxies) gravitational lensing analysis based on Hubble Space Telescope observations and Keck arc spectroscopy confirms that the subclusters have near-equal mass. The total mass distribution in each of the subclusters is clearly offset (at > 4σ significance) from the peak of the hot X-ray emitting gas (the main baryonic component), but aligned with the distribution of galaxies. We measure the fractions of mass in hot gas (0.09 +0.07 −0.03 ) and stars (0.010 +0.007 −0.004 ), consistent with those of typical clusters, finding that dark matter is the dominant contributor to the gravitational field. Under the assumption that the subclusters experienced a head-on collision in the plane of the sky, we obtain an order-of-magnitude estimate of the dark matter self-interaction cross-section of σ/m < 4cm 2 g −1 , re-affirming the results from the Bullet Cluster on the collisionless nature of dark matter. Subject headings: cosmology: dark matter – gravitational lensing – galaxies:clusters:individual:MACS J0025.4−1222

[1]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[2]  S. Shectman,et al.  Evidence for substructure in rich clusters of galaxies from radial-velocity measurements , 1988 .

[3]  Supriya Chakrabarti,et al.  Astronomical data analysis from remote sites , 1988 .

[4]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[5]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[6]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[7]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[8]  D. McCammon,et al.  Photoelectric absorption cross sections with variable abundances , 1992 .

[9]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[10]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[11]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[12]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[13]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[14]  S. Allen Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies , 1997, astro-ph/9710217.

[15]  A. Edge,et al.  A ROSAT study of the cores of clusters of galaxies — I. Cooling flows in an X-ray flux-limited sample , 1998, astro-ph/9805122.

[16]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[17]  Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope Images , 1999, astro-ph/9905090.

[18]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[19]  A. Biviano,et al.  The dynamical status of the cluster of galaxies 1E0657-56 , 2002, astro-ph/0202323.

[20]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[21]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[22]  P. Schneider,et al.  The signature of substructure on gravitational lensing in the Lambda CDM cosmological model , 2003 .

[23]  R. Ellis,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+1654 at z=0.4. II. The Cluster Mass Distribution , 2003, astro-ph/0307299.

[24]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[25]  C. Weinheimer Direct neutrino mass experiments - present and future , 2003 .

[26]  Mass-sheet degeneracy: Fundamental limit on the cluster mass reconstruction from statistical (weak) lensing , 2004, astro-ph/0405357.

[27]  R. Bender,et al.  The Munich Near-Infrared Cluster Survey (MUNICS). VI. The Stellar Masses of K-Band-selected Field Galaxies to z ~ 1.2 , 2004 .

[28]  Jacob D. Bekenstein,et al.  Relativistic gravitation theory for the MOND paradigm , 2004, astro-ph/0403694.

[29]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[30]  UCSD,et al.  Direct Constraints on the Dark Matter Self-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657–56 , 2004 .

[31]  S. Allen,et al.  The prevalence of cooling cores in clusters of galaxies at z≈ 0.15–0.4 , 2005, astro-ph/0503232.

[32]  M. Lombardi,et al.  Strong and weak lensing united I: the combined strong and weak lensing cluster mass reconstruction method , 2004, astro-ph/0410643.

[33]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[34]  Tucson,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[35]  Tucson,et al.  Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657–558 , 2006, astro-ph/0608408.

[36]  Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry , 2006, astro-ph/0606216.

[37]  How rare is the bullet cluster , 2006, astro-ph/0604443.

[38]  P. Hudelot,et al.  Combining Strong and Weak Gravitational Lensing in Abell 1689 , 2006, astro-ph/0612165.

[39]  A complete sample of 12 very x-ray luminous galaxy clusters at z >0.5 , 2007, astro-ph/0703394.

[40]  Anthony H. Gonzalez,et al.  Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.

[41]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[42]  The speed of the ‘bullet’ in the merging galaxy cluster 1E0657−56 , 2007, astro-ph/0703232.

[43]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[44]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[45]  R. Ellis,et al.  Dark matter maps reveal cosmic scaffolding , 2007, Nature.

[46]  The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter , 2007, astro-ph/0702146.

[47]  Yannick Mellier,et al.  The Stability of the Point-Spread Function of the Advanced Camera for Surveys on the Hubble Space Telescope and Implications for Weak Gravitational Lensing* , 2007 .

[48]  H. Hoekstra,et al.  A Dark Core in Abell 520 , 2007, 0706.3048.

[49]  H. Ebeling,et al.  The Spatial Distribution of Galaxies of Different Spectral Types in the Massive Intermediate-Redshift Cluster MACS J0717.5+3745 , 2008, 0805.2238.

[50]  C. Fassnacht,et al.  THE ENVIRONMENTS OF LOW- AND HIGH-LUMINOSITY RADIO GALAXIES AT MODERATE REDSHIFTS , 2008, 0801.0424.

[51]  T. Schrabback,et al.  Dark Matter and Baryons in the X-Ray Luminous Merging Galaxy Cluster RX J1347.5–1145 , 2007, 0711.4850.

[52]  X-ray Group and cluster mass profiles in MOND : Unexplained mass on the group scale , 2008 .

[53]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .