Growth related aspects of epitaxial nanowires

We use metal–organic vapour phase epitaxy for growth investigations of epitaxial nanowires in III–V materials, such as GaAs, GaP, InAs, and InP. In this paper we focus on gold assisted growth of nanowires. The nature of the metal particle—whether it is in the solid or liquid state—is discussed. For InAs and InP we have demonstrated that gold assisted wires can only grow at temperatures where the particle is solid. We continue with a discussion concerning the kinetic aspects of nanowire growth. Under common growth conditions one observes that thinner wires grow faster than thicker wires, contrary to what was described in the early days of whisker growth. We address and resolve this discrepancy by discussing a simple transport model and comparing the supersaturations of different systems. Finally, we describe the morphology of epitaxial III–V nanowires with emphasis on the crystal structure.

[1]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[2]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[3]  E. Kaldis Current Topics in Materials Science , 1980 .

[4]  James S. Harris,et al.  Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms , 2001 .

[5]  T. Katsuyama,et al.  GaAs free‐standing quantum‐size wires , 1993 .

[6]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[7]  R. P. Gupta,et al.  Diffusion of gallium in thin gold films on GaAs , 1987 .

[8]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[9]  L. Samuelson,et al.  The influence of surface diffusion in growth of IIIV nanowires , 2004 .

[10]  L. Samuelson,et al.  Growth and characterization of defect free GaAs nanowires , 2006 .

[11]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[12]  B. Korgel,et al.  Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. , 2005, Nano letters.

[13]  S. Ghandhi,et al.  Deposition of GaAs Epitaxial Layers by Organometallic CVD Temperature and Orientation Dependence , 1983 .

[14]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[15]  W. Breiland,et al.  Observation of gas-phase Si atoms in the chemical vapor deposition of silicon from dichlorosilane , 1988 .

[16]  E. Lundgren,et al.  Improving InAs nanotree growth with composition-controlled Au–In nanoparticles , 2006 .

[17]  W. Hume-rothery,et al.  The equilibrium diagram of the system gold-indium , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  Lars Samuelson,et al.  Gold Nanoparticles: Production, Reshaping, and Thermal Charging , 1999 .

[19]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[20]  Ray R. LaPierre,et al.  Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy , 2006 .

[21]  V. Ustinov,et al.  Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment , 2005 .

[22]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[23]  B. Korgel,et al.  Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals , 2005 .

[24]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[25]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[26]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.

[27]  K. Dick,et al.  A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires , 2005 .

[28]  Hiroshi Nakashima,et al.  Vapor–liquid–solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy , 2004 .

[29]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[30]  F. Hottier,et al.  Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics , 1982 .

[31]  Lars Samuelson,et al.  Defect-free InP nanowires grown in [001] direction on InP (001) , 2004 .

[32]  Y. Hasumi Lateral diffusion of In and formation of AuIn2 in Au‐In thin films , 1985 .

[33]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[34]  O. M. Gorbenko,et al.  Atomic structure of MBE-grown GaAs nanowhiskers , 2005 .

[35]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[36]  M. Borgström,et al.  Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study , 2004 .

[37]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[38]  P. Yang,et al.  Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections , 2003 .

[39]  Takashi Fukui,et al.  Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays , 2005 .

[40]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[41]  K. Kavanagh,et al.  Growth, branching, and kinking of molecular-beam epitaxial 〈110〉 GaAs nanowires , 2003 .