Utilising Graph Machine Learning within Drug Discovery and Development

Graph Machine Learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets - amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarise work incorporating: target identification, design of small molecules and biologics, and drug repurposing. Whilst the field is still emerging, key milestones including repurposed drugs entering in vivo studies, suggest graph machine learning will become a modelling framework of choice within biomedical machine learning.

[1]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[2]  John McCafferty,et al.  Beyond natural antibodies: the power of in vitro display technologies , 2011, Nature Biotechnology.

[3]  Sotaro Tsukizawa,et al.  Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Jure Leskovec,et al.  Modeling polypharmacy side effects with graph convolutional networks , 2018, bioRxiv.

[5]  Tim Perera,et al.  The Wnt-dependent signaling pathways as target in oncology drug discovery , 2006, Investigational New Drugs.

[6]  Zichen Wang,et al.  Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing , 2020, Bioinform..

[7]  Timothy M. Hospedales,et al.  TuckER: Tensor Factorization for Knowledge Graph Completion , 2019, EMNLP.

[8]  Jussi Paananen,et al.  An omics perspective on drug target discovery platforms , 2019, Briefings Bioinform..

[9]  Daniel W. A. Buchan,et al.  A large-scale evaluation of computational protein function prediction , 2013, Nature Methods.

[10]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[11]  J. Pelletier,et al.  Target identification using drug affinity responsive target stability (DARTS) , 2009, Proceedings of the National Academy of Sciences.

[12]  Narges Razavian,et al.  Graph Neural Network on Electronic Health Records for Predicting Alzheimer's Disease , 2019, ArXiv.

[13]  Pietro Lio',et al.  Clique pooling for graph classification , 2019, ArXiv.

[14]  Tommi Vatanen,et al.  Structure-Based Function Prediction using Graph Convolutional Networks , 2019, bioRxiv.

[15]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[16]  Xiao Huang,et al.  Accelerated Attributed Network Embedding , 2017, SDM.

[17]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[18]  Evan N. Feinberg,et al.  Improvement in ADMET Prediction with Multitask Deep Featurization. , 2020, Journal of medicinal chemistry.

[19]  Jennifer C. Goldsack,et al.  Advancing the Use of Mobile Technologies in Clinical Trials: Recommendations from the Clinical Trials Transformation Initiative. , 2019, Digital biomarkers.

[20]  Vladimir N. Uversky,et al.  Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics , 2019, Front. Phys..

[21]  Jure Leskovec,et al.  PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest , 2020, KDD.

[22]  Sameh K. Mohamed,et al.  Discovering protein drug targets using knowledge graph embeddings , 2019, Bioinform..

[23]  Davide Eynard,et al.  Temporal Graph Networks for Deep Learning on Dynamic Graphs , 2020, ArXiv.

[24]  Charles C. Persinger,et al.  How to improve R&D productivity: the pharmaceutical industry's grand challenge , 2010, Nature Reviews Drug Discovery.

[25]  Nassir Navab,et al.  Differentiable Graph Module (DGM) for Graph Convolutional Networks , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Rose Yu,et al.  Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology , 2019, NeurIPS.

[27]  Yizhou Sun,et al.  Embedding Uncertain Knowledge Graphs , 2018, AAAI.

[28]  Francesca Vitali,et al.  Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools , 2020, Frontiers in Oncology.

[29]  Yoichi Tomiura,et al.  Description of research data in laboratory notebooks: Challenges and opportunities , 2020, ASIST.

[30]  Myle Ott,et al.  Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences , 2019, Proceedings of the National Academy of Sciences.

[31]  Donald F. Towsley,et al.  Diffusion-Convolutional Neural Networks , 2015, NIPS.

[32]  J. Skolnick,et al.  Comprehensive prediction of drug-protein interactions and side effects for the human proteome , 2015, Scientific Reports.

[33]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[34]  Hinrich W. H. Göhlmann,et al.  A genetics-led approach defines the drug target landscape of 30 immune-related traits , 2019, Nature Genetics.

[35]  Darren J. Burgess,et al.  Spatial transcriptomics coming of age , 2019, Nature Reviews Genetics.

[36]  Thomas Lengauer,et al.  Automatic Generation of Complementary Descriptors with Molecular Graph Networks , 2005, J. Chem. Inf. Model..

[37]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[38]  Guillaume Bouchard,et al.  Complex Embeddings for Simple Link Prediction , 2016, ICML.

[39]  Russ B. Altman,et al.  A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases , 2019, bioRxiv.

[40]  Maria Jesus Martin,et al.  ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature , 2018, BMC Bioinformatics.

[41]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[42]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[43]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[44]  Srivamshi Pittala,et al.  Relation-weighted Link Prediction for Disease Gene Identification , 2020, ArXiv.

[45]  Mulin Jun Li,et al.  Nature Genetics Advance Online Publication a N a Ly S I S the Support of Human Genetic Evidence for Approved Drug Indications , 2022 .

[46]  Jian Tang,et al.  InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization , 2019, ICLR.

[47]  Wenwu Zhu,et al.  Deep Learning on Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[48]  Davide Eynard,et al.  Fake News Detection on Social Media using Geometric Deep Learning , 2019, ArXiv.

[49]  R. W. Hansen,et al.  Journal of Health Economics , 2016 .

[50]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[51]  Nam D Nguyen,et al.  Multiview learning for understanding functional multiomics , 2020, PLoS Comput. Biol..

[52]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[53]  Klaus-Robert Müller,et al.  Machine learning of accurate energy-conserving molecular force fields , 2016, Science Advances.

[54]  Jure Leskovec,et al.  Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning , 2020, NeurIPS.

[55]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[56]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[57]  Graciela Gonzalez-Hernandez,et al.  Utilizing social media data for pharmacovigilance: A review , 2015, J. Biomed. Informatics.

[58]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[59]  Khader Shameer,et al.  In silico methods for drug repurposing and pharmacology , 2016, Wiley interdisciplinary reviews. Systems biology and medicine.

[60]  Alessandro Sperduti,et al.  Supervised neural networks for the classification of structures , 1997, IEEE Trans. Neural Networks.

[61]  Benjamin A. Shoemaker,et al.  PubChem in 2021: new data content and improved web interfaces , 2020, Nucleic Acids Res..

[62]  Jonathan Shlomi,et al.  Graph neural networks in particle physics , 2020, Mach. Learn. Sci. Technol..

[63]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[64]  F. Cheng,et al.  Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 , 2020, Cell Discovery.

[65]  Xiao Huang,et al.  Label Informed Attributed Network Embedding , 2017, WSDM.

[66]  Steven J Shire,et al.  Formulation and manufacturability of biologics. , 2009, Current opinion in biotechnology.

[67]  Taiji Suzuki,et al.  Graph Neural Networks Exponentially Lose Expressive Power for Node Classification , 2019, ICLR.

[68]  Cesare Alippi,et al.  Spectral Clustering with Graph Neural Networks for Graph Pooling , 2019, ICML.

[69]  B. Stockwell,et al.  Multicomponent therapeutics for networked systems , 2005, Nature Reviews Drug Discovery.

[70]  A. Bender,et al.  Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. , 2006, IDrugs : the investigational drugs journal.

[71]  Christopher Cozens,et al.  Machine learning‐driven protein engineering: a case study in computational drug discovery , 2020, Engineering biology.

[72]  Gautier Koscielny,et al.  Open Targets Platform: new developments and updates two years on , 2018, Nucleic Acids Res..

[73]  Cláudio Nunes-Alves Antimicrobials: New tricks for old drugs , 2015, Nature Reviews Microbiology.

[74]  Hiroshi Kajino,et al.  Molecular Hypergraph Grammar with its Application to Molecular Optimization , 2018, ICML.

[75]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[76]  Ted Natoli,et al.  Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map , 2017, bioRxiv.

[77]  Joan Bruna,et al.  Can graph neural networks count substructures? , 2020, NeurIPS.

[78]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[79]  Jae Yong Ryu,et al.  Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers , 2019, Proceedings of the National Academy of Sciences.

[80]  Andrew R. Leach,et al.  ChEMBL: towards direct deposition of bioassay data , 2018, Nucleic Acids Res..

[81]  Tom L. Blundell,et al.  A Personal History of Using Crystals and Crystallography to Understand Biology and Advanced Drug Discovery , 2020, Crystals.

[82]  Tom L. Blundell,et al.  CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis , 2015, Database J. Biol. Databases Curation.

[83]  Michael W. Dusenberry,et al.  Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer , 2019, AAAI.

[84]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[85]  Ken-ichi Kawarabayashi,et al.  Representation Learning on Graphs with Jumping Knowledge Networks , 2018, ICML.

[86]  Danushka Bollegala,et al.  Social media and pharmacovigilance: A review of the opportunities and challenges. , 2015, British journal of clinical pharmacology.

[87]  P. Clemons,et al.  Target identification and mechanism of action in chemical biology and drug discovery. , 2013, Nature chemical biology.

[88]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[89]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[90]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[91]  Pietro Lio,et al.  Deep Graph Mapper: Seeing Graphs Through the Neural Lens , 2020, Frontiers in Big Data.

[92]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[93]  A. Hata,et al.  Targeting the TGFβ signalling pathway in disease , 2012, Nature Reviews Drug Discovery.

[94]  Harren Jhoti,et al.  High-throughput crystallography for lead discovery in drug design , 2002, Nature Reviews Drug Discovery.

[95]  Niroshini Nirmalan,et al.  “Omics”-Informed Drug and Biomarker Discovery: Opportunities, Challenges and Future Perspectives , 2016, Proteomes.

[96]  B. Obermayer,et al.  Tracing tumorigenesis in a solid tumor model at single-cell resolution , 2020, Nature Communications.

[97]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[98]  Jan Eric Lenssen,et al.  Fast Graph Representation Learning with PyTorch Geometric , 2019, ArXiv.

[99]  Rui Xu,et al.  Discovering Symbolic Models from Deep Learning with Inductive Biases , 2020, NeurIPS.

[100]  Ruedi Aebersold,et al.  Stabilizing variable selection and regression , 2019, The Annals of Applied Statistics.

[101]  Yaron Lipman,et al.  Invariant and Equivariant Graph Networks , 2018, ICLR.

[102]  Ping Zhang,et al.  Interpretable Drug Target Prediction Using Deep Neural Representation , 2018, IJCAI.

[103]  Pablo Barceló,et al.  Logical Expressiveness of Graph Neural Networks , 2019 .

[104]  Jure Leskovec,et al.  Position-aware Graph Neural Networks , 2019, ICML.

[105]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[106]  Michelle Giglio,et al.  Human Disease Ontology 2018 update: classification, content and workflow expansion , 2018, Nucleic Acids Res..

[107]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[108]  Stephan Günnemann,et al.  Directional Message Passing for Molecular Graphs , 2020, ICLR.

[109]  S. Sidhu,et al.  Faculty Opinions recommendation of Drugs derived from phage display: from candidate identification to clinical practice. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[110]  T. Blundell,et al.  Structural biology in fragment-based drug design. , 2010, Current opinion in structural biology.

[111]  Chang Zhou,et al.  AliGraph: A Comprehensive Graph Neural Network Platform , 2019, Proc. VLDB Endow..

[112]  Kevin K. Yang,et al.  Machine-learning-guided directed evolution for protein engineering , 2018, Nature Methods.

[113]  George Karypis,et al.  Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning , 2020, Journal of proteome research.

[114]  Wei Zheng,et al.  Phenotypic screens as a renewed approach for drug discovery. , 2013, Drug discovery today.

[115]  Paolo Merialdo,et al.  Knowledge Graph Embedding for Link Prediction , 2020, ACM Transactions on Knowledge Discovery from Data.

[116]  George Karypis,et al.  Few-shot link prediction via graph neural networks for Covid-19 drug-repurposing , 2020, ArXiv.

[117]  Xiaojun Wu,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[118]  L E Scriven,et al.  Instability and dynamic pattern in cellular networks. , 1971, Journal of theoretical biology.

[119]  Jingtai Han Understanding biological functions through molecular networks , 2008, Cell Research.

[120]  Sampo Pyysalo,et al.  Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches , 2018, BMC Bioinformatics.

[121]  C. Wiesmann,et al.  The discovery of first-in-class drugs: origins and evolution , 2014, Nature Reviews Drug Discovery.

[122]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[123]  Zhi Huang,et al.  MORONET: Multi-omics Integration via Graph Convolutional Networks for Biomedical Data Classification , 2020, bioRxiv.

[124]  Aidong Zhang,et al.  Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE) , 2019, BMC Genomics.

[125]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[126]  P. Colas,et al.  Yeast two-hybrid methods and their applications in drug discovery. , 2012, Trends in pharmacological sciences.

[127]  A. Barabasi,et al.  Network medicine framework for identifying drug-repurposing opportunities for COVID-19 , 2020, Proceedings of the National Academy of Sciences.

[128]  Christopher Ré,et al.  Machine Learning on Graphs: A Model and Comprehensive Taxonomy , 2020, J. Mach. Learn. Res..

[129]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[130]  Silvia Crivelli,et al.  Structural Learning of Proteins Using Graph Convolutional Neural Networks , 2019, bioRxiv.

[131]  Krister Wennerberg,et al.  Methods for High-Throughput Drug Combination Screening and Synergy Scoring , 2016, bioRxiv.

[132]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[133]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[134]  M. Mckee,et al.  Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. , 2020, JAMA.

[135]  N. Ando,et al.  X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future. , 2018, Biochemistry.

[136]  Pedro Ordunez,et al.  Fixed‐dose combination pharmacologic therapy to improve hypertension control worldwide: Clinical perspective and policy implications , 2018, Journal of clinical hypertension.

[137]  Heeva Baharlou,et al.  Mass Cytometry Imaging for the Study of Human Diseases—Applications and Data Analysis Strategies , 2019, Front. Immunol..

[138]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[139]  Andreas Windemuth,et al.  Structural coverage of the proteome for pharmaceutical applications. , 2017, Drug discovery today.

[140]  D. Juan,et al.  Interpreting molecular similarity between patients as a determinant of disease comorbidity relationships , 2020, Nature Communications.

[141]  Jian-Yun Nie,et al.  RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space , 2018, ICLR.

[142]  Syed Asad Rahman,et al.  Dual direction CRISPR transcriptional regulation screening uncovers gene networks driving drug resistance , 2017, Scientific Reports.

[143]  Yang Li,et al.  PotentialNet for Molecular Property Prediction , 2018, ACS central science.

[144]  Sameh K. Mohamed,et al.  BioKG: A Knowledge Graph for Relational Learning On Biological Data , 2020, CIKM.

[145]  Vladimir B. Bajic,et al.  DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches , 2017, Bioinform..

[146]  M. Prunotto,et al.  Opportunities and challenges in phenotypic drug discovery: an industry perspective , 2017, Nature Reviews Drug Discovery.

[147]  G. Nolan,et al.  Mass Cytometry: Single Cells, Many Features , 2016, Cell.

[148]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[149]  Russ B. Altman,et al.  Graph Convolutional Neural Networks for Predicting Drug-Target Interactions , 2018, bioRxiv.

[150]  Pietro Liò,et al.  Deep Graph Infomax , 2018, ICLR.

[151]  Michael T. McManus,et al.  Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. , 2015, Molecular cell.

[152]  Jure Leskovec,et al.  Hyperbolic Graph Convolutional Neural Networks , 2019, NeurIPS.

[153]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[154]  Davide Eynard,et al.  SIGN: Scalable Inception Graph Neural Networks , 2020, ArXiv.

[155]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[156]  Prabhat,et al.  Graph Neural Networks for IceCube Signal Classification , 2018, 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA).

[157]  Jennifer L Hu,et al.  MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices , 2019, Nature Methods.

[158]  F. Scarselli,et al.  A new model for learning in graph domains , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[159]  Sameer Velankar,et al.  Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition , 2019, Proteins.

[160]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[161]  Anushya Muruganujan,et al.  The Gene Ontology resource: enriching a GOld mine , 2020, Nucleic Acids Res..

[162]  NEW TRICKS FOR OLD DRUGS , 1982 .

[163]  David Ryan Koes,et al.  Protein-Ligand Scoring with Convolutional Neural Networks , 2016, Journal of chemical information and modeling.

[164]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[165]  Emma J. Chory,et al.  A Deep Learning Approach to Antibiotic Discovery , 2020, Cell.

[166]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[167]  Regina Barzilay,et al.  Generative Models for Graph-Based Protein Design , 2019, DGS@ICLR.

[168]  Baoguang Zhao,et al.  Design, synthesis and selection of DNA-encoded small-molecule libraries. , 2009, Nature chemical biology.

[169]  L. Martin,et al.  Trial watch: Clinical trial cycle times continue to increase despite industry efforts , 2017, Nature Reviews Drug Discovery.

[170]  I. Agranat,et al.  "New drug" designations for new therapeutic entities: new active substance, new chemical entity, new biological entity, new molecular entity. , 2014, Journal of medicinal chemistry.

[171]  Pan Pantziarka,et al.  ReDO_DB: the repurposing drugs in oncology database , 2018, Ecancermedicalscience.

[172]  Wendy A. Warr,et al.  Fragment-based drug discovery , 2009, J. Comput. Aided Mol. Des..

[173]  Jacob K. Asiedu,et al.  The Drug Repurposing Hub: a next-generation drug library and information resource , 2017, Nature Medicine.

[174]  Marcin J. Skwark,et al.  Mabellini: a genome-wide database for understanding the structural proteome and evaluating prospective antimicrobial targets of the emerging pathogen Mycobacterium abscessus , 2019, Database J. Biol. Databases Curation.

[175]  Mark Craven,et al.  A review of active learning approaches to experimental design for uncovering biological networks , 2017, PLoS Comput. Biol..

[176]  Alexander D. MacKerell,et al.  Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. , 2011, Current computer-aided drug design.

[177]  Antoni Ribas,et al.  Single-cell analysis tools for drug discovery and development , 2015, Nature Reviews Drug Discovery.

[178]  Norman Stockbridge,et al.  Technology-Enabled Clinical Trials: Transforming Medical Evidence Generation. , 2019, Circulation.

[179]  Kolbeinn Guðmundsson,et al.  [Biologics and biosimilars]. , 2014, Laeknabladid.

[180]  Olga Veksler,et al.  Graph Cuts in Vision and Graphics: Theories and Applications , 2006, Handbook of Mathematical Models in Computer Vision.

[181]  Alex Fout,et al.  Protein Interface Prediction using Graph Convolutional Networks , 2017, NIPS.

[182]  Clémence Réda,et al.  Machine learning applications in drug development , 2019, Computational and structural biotechnology journal.

[183]  Nikolaos Doulamis,et al.  Deep Learning for Computer Vision: A Brief Review , 2018, Comput. Intell. Neurosci..

[184]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[185]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[186]  Thanigaimalai Pillaiyar,et al.  A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery , 2020, European Journal of Medicinal Chemistry.

[187]  Jure Leskovec,et al.  Hierarchical Graph Representation Learning with Differentiable Pooling , 2018, NeurIPS.

[188]  Jacob F. Degner,et al.  Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval , 2019, bioRxiv.

[189]  Alán Aspuru-Guzik,et al.  Deep learning enables rapid identification of potent DDR1 kinase inhibitors , 2019, Nature Biotechnology.

[190]  Sony Malhotra,et al.  Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census , 2019, PloS one.

[191]  Silva Kasela,et al.  Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells , 2020, Cell.

[192]  Yiling Lu,et al.  Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery , 2005, Nature Reviews Drug Discovery.

[193]  R. Altman,et al.  Data-Driven Prediction of Drug Effects and Interactions , 2012, Science Translational Medicine.

[194]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[195]  Pietro Liò,et al.  Drug-Drug Adverse Effect Prediction with Graph Co-Attention , 2019, ArXiv.

[196]  Jing Tang,et al.  DrugComb: an integrative cancer drug combination data portal , 2019, Nucleic Acids Res..

[197]  T. Jaakkola,et al.  Hierarchical Generation of Molecular Graphs using Structural Motifs , 2020, ICML.

[198]  Regina Barzilay,et al.  Modeling Drug Combinations based on Molecular Structures and Biological Targets , 2020 .

[199]  Petar Velickovic,et al.  Attentive cross-modal paratope prediction , 2018, J. Comput. Biol..

[200]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[201]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[202]  M. Bronstein,et al.  Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning , 2019, Nature Methods.

[203]  R. Aqeilan,et al.  Combined shRNA over CRISPR/cas9 as a methodology to detect off-target effects and a potential compensatory mechanism , 2018, Scientific Reports.

[204]  Yaohang Li,et al.  Drug repositioning based on bounded nuclear norm regularization , 2019, Bioinform..

[205]  Albert Perez-Riba,et al.  Fast and Flexible Protein Design Using Deep Graph Neural Networks. , 2020, Cell systems.

[206]  Dieter Galea,et al.  HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods , 2019, Scientific Reports.

[207]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[208]  Andrew Emili,et al.  Panomics for Precision Medicine. , 2018, Trends in molecular medicine.

[209]  Christoph Berkholz,et al.  Limitations of Algebraic Approaches to Graph Isomorphism Testing , 2015, ICALP.

[210]  Ivan G. Costa,et al.  A multiple kernel learning algorithm for drug-target interaction prediction , 2016, BMC Bioinformatics.

[211]  Josipa Kuleš,et al.  Library-based display technologies: where do we stand? , 2016, Molecular bioSystems.

[212]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[213]  D. Swinney,et al.  How were new medicines discovered? , 2011, Nature Reviews Drug Discovery.

[214]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[215]  Céline Hudelot,et al.  Active Learning for Imbalanced Datasets , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[216]  John Canny,et al.  Evaluating Protein Transfer Learning with TAPE , 2019, bioRxiv.

[217]  Alan R. Moody,et al.  From Big Data to Precision Medicine , 2019, Front. Med..

[218]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[219]  Jaewoo Kang,et al.  Self-Attention Graph Pooling , 2019, ICML.

[220]  Jun O. Liu,et al.  Identification and validation of protein targets of bioactive small molecules. , 2012, Bioorganic & medicinal chemistry.

[221]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[222]  Antonio Deiana,et al.  Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell , 2019 .

[223]  Alex Hawkins-Hooker,et al.  Generating functional protein variants with variational autoencoders , 2020, bioRxiv.

[224]  Shuiwang Ji,et al.  Graph U-Nets , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[225]  Guodong Chen,et al.  Structural mass spectrometry in biologics discovery: advances and future trends. , 2012, Drug discovery today.

[226]  C. Anfinsen,et al.  Selective enzyme purification by affinity chromatography. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[227]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[228]  E J Licitra,et al.  A three-hybrid system for detecting small ligand-protein receptor interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[229]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[230]  Charu C. Aggarwal,et al.  Heterogeneous Network Embedding via Deep Architectures , 2015, KDD.

[231]  Tom L. Blundell,et al.  Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures and Interaction Networks , 2020, bioRxiv.

[232]  Pascal Friederich,et al.  Neural Message Passing on High Order Paths , 2020, Mach. Learn. Sci. Technol..

[233]  Russ B. Altman,et al.  A global network of biomedical relationships derived from text , 2018, Bioinform..

[234]  Jure Leskovec,et al.  Distance Encoding -- Design Provably More Powerful GNNs for Structural Representation Learning , 2020 .

[235]  Pietro Liò,et al.  Towards Sparse Hierarchical Graph Classifiers , 2018, ArXiv.

[236]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[237]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.