Das Fugen von temperaturempfindlichen Aluminiummatrix-Verbundwerkstoffen erfordert geeignete Lotwerkstoffe und angepasste Fugetechnologien. Dabei existieren unterschiedliche Losungsansatze. Einerseits zeichnen sich die entwickelten, partikelverstarkten Zinnbasislote durch niedrige Verarbeitungstemperaturen und gesteigerte mechanische Eigenschaften aus. Andererseits ermoglichen die entwickelten, ultraschallunterstutzten Lottechnologien mit induktiver bzw. widerstandsbasierter Erwarmung den Einsatz von Zinkbasisloten. Die notwendige Lottemperatur wird dabei lokal in der Fugezone erzeugt. Die Kombination mit der Ultraschalleinleitung stellt eine flussmittelfreie Benetzung der Fugeflachen sicher.
The joining of temperature-sensitive aluminium matrix composites requires appropriate fillers and adapted joining technologies. Thereby different solutions are possible. On the one hand, the developed, particulate-reinforced tin based fillers are featured by a low process temperature and increased mechanical properties. On the other hand, the developed, ultrasound supported soldering technologies (inductive respectively resistance based heating) allow the use of zinc based fillers. The required heat input is realised locally. In combination with an ultrasound process a fluxless wetting is obtained.
[1]
L. Krüger,et al.
Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
,
2006
.
[2]
Han Gao,et al.
Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn-3.5Ag lead-free solder
,
2006
.
[3]
Ping Liu,et al.
Effect of SiC Nanoparticle Additions on Microstructure and Microhardness of Sn-Ag-Cu Solder Alloy
,
2008
.
[4]
B. Wielage,et al.
Nanocrystalline Al–Al2O3p and SiCp composites produced by high-energy ball milling
,
2008
.
[5]
S. Y. Chang,et al.
Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder
,
2010
.