Complete forcing numbers of catacondensed hexagonal systems

Let G be a graph with edge set E(G) that admits a perfect matching M. A forcing set of M is a subset of M contained in no other perfect matchings of G. A global forcing set of $$G$$G, introduced by Vukičević et al., is a subset of $$E(G)$$E(G) on which there are distinct restrictions of any two different perfect matchings of $$G$$G. Combining the above “forcing” and “global” ideas, we introduce and define a complete forcing set of G as a subset of $$E(G)$$E(G) on which the restriction of any perfect matching $$M$$M of $$G$$G is a forcing set of $$M$$M. The minimum cardinality of complete forcing sets is the complete forcing number of $$G$$G. First we establish some initial results about these two novel concepts, including a criterion for a complete forcing set, and comparisons between the complete forcing number and global forcing number. Then we give an explicit formula for the complete forcing number of a hexagonal chain. Finally a recurrence relation for the complete forcing number of a catacondensed hexagonal system is derived.

[1]  V. K. Balakrishnan Schaum's outline of theory and problems of combinatorics , 1995 .

[2]  T. Došlić Global Forcing Number of Benzenoid Graphs , 2007 .

[3]  Tomislav Doslic,et al.  Global forcing number of grid graphs , 2007, Australas. J Comb..

[4]  D. J. Klein,et al.  Kekule valence structures revisited. Innate degrees of freedom of PI-electron couplings , 1985 .

[5]  Matthew E. Riddle The minimum forcing number for the torus and hypercube , 2002, Discret. Math..

[6]  Heping Zhang,et al.  Global Forcing Number of Some Chemical Graphs , 2012 .

[7]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[8]  Hamed Hatami,et al.  On the spectrum of the forced matching number of graphs , 2004, Australas. J Comb..

[9]  Seth Kleinerman Bounds on the forcing numbers of bipartite graphs , 2006, Discret. Math..

[10]  Paul D. Seymour,et al.  Perfect matchings in planar cubic graphs , 2012, Comb..

[11]  Peter Adams,et al.  On the forced matching numbers of bipartite graphs , 2004, Discret. Math..

[12]  F. Harary,et al.  Graphical properties of polyhexes: Perfect matching vector and forcing , 1991 .

[13]  Heping Zhang,et al.  Forcing matching numbers of fullerene graphs , 2010, Discret. Appl. Math..

[14]  D. Vukicevic,et al.  Total forcing number of the triangular grid , 2004 .

[15]  Heping Zhang,et al.  Plane elementary bipartite graphs , 2000, Discret. Appl. Math..

[16]  Manouchehr Zaker,et al.  Defining sets in vertex colorings of graphs and latin rectangles , 1997, Discret. Math..

[17]  Jelena Sedlar,et al.  The global forcing number of the parallelogram polyhex , 2012, Discret. Appl. Math..

[18]  Zhongyuan Che,et al.  Forcing on Perfect Matchings - A Survey , 2011 .

[19]  Louis Esperet,et al.  Exponentially many perfect matchings in cubic graphs , 2011 .

[20]  M. Randic,et al.  Innate degree of freedom of a graph , 1987 .

[21]  Lior Pachter,et al.  Forcing numbers of stop signs , 2003, Theor. Comput. Sci..

[22]  Ken Gray On the minimum number of blocks defining a design , 1990, Bulletin of the Australian Mathematical Society.

[23]  Lior Pachter,et al.  Forcing matchings on square grids , 1998, Discret. Math..