On Aligned Bar 1-Visibility Graphs

A graph is called a bar 1-visibility graph if its vertices can be represented as horizontal segments, called bars, and each edge corresponds to a vertical line of sight which can traverse another bar. If all bars are aligned at one side, then the graph is an aligned bar 1-visibility graph, AB1V graph for short. We consider AB1V graphs from different angles. First, we study combinatorial properties and K5 subgraphs. Then, we establish a difference between maximal and optimal AB1V graphs, where optimal AB1V graphs have the maximum of 4n− 10 edges. We show that optimal AB1V graphs can be recognized in O(n) time and prove that an AB1V representation is determined by an ordering of the bars either from left to right or by length. Finally, we introduce a new operation, called path-addition, that admits the addition of vertex-disjoint paths to a given graph and show that AB1V graphs are closed under path-addition. This distinguishes AB1V graphs from other classes of graphs. In particular, we explore the relationship to other classes of beyond-planar graphs and show that every outer 1-planar graph is an AB1V graph, whereas AB1V graphs are incomparable, e.g., to planar, k-planar, outer fan-planar, outer fan-crossing free, fan-crossing free, bar (1, j)-visibility, and RAC graphs. Submitted: May 2016 Reviewed: November 2016 Revised: December 2016 Reviewed: December 2016 Revised: December 2016 Accepted: January 2017 Final: January 2017 Published: February 2017 Article type: Regular paper Communicated by: M. Kaykobad and R. Petreschi Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/18-2. An extended abstract of this paper has been presented at WALCOM 2016 [11]. E-mail addresses: brandenb@informatik.uni-passau.de (Franz J. Brandenburg)of this paper has been presented at WALCOM 2016 [11]. E-mail addresses: brandenb@informatik.uni-passau.de (Franz J. Brandenburg) 282 Brandenburg, Esch, Neuwirth Aligned Bar 1-Visibility Graphs

[1]  Ellen Gethner,et al.  Bar k-Visibility Graphs , 2007, J. Graph Algorithms Appl..

[2]  Xin Zhang Drawing complete multipartite graphs on the plane with restrictions on crossings , 2013, ArXiv.

[3]  Franz-Josef Brandenburg,et al.  Recognizing Optimal 1-Planar Graphs in Linear Time , 2016, Algorithmica.

[4]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[5]  Ferran Hurtado,et al.  On a Visibility Representation of Graphs , 1995, GD.

[6]  Zhi-Zhong Chen,et al.  Map graphs , 1999, JACM.

[7]  Thomas Andreae Some Results on Visibility Graphs , 1992, Discret. Appl. Math..

[8]  Thomas C. Shermer,et al.  On representations of some thickness-two graphs , 1995, Comput. Geom..

[9]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[10]  Michael Kaufmann,et al.  On Bar (1, j)-Visibility Graphs - (Extended Abstract) , 2015, WALCOM.

[11]  Christian Bachmaier,et al.  Outer 1-Planar Graphs , 2016, Algorithmica.

[12]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[13]  Chak-Kuen Wong,et al.  A note on visibility graphs , 1987, Discret. Math..

[14]  Tomás Madaras,et al.  The structure of 1-planar graphs , 2007, Discret. Math..

[15]  Giuseppe Liotta,et al.  A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.

[16]  Zhi-Zhong Chen,et al.  Recognizing Hole-Free 4-Map Graphs in Cubic Time , 2005, Algorithmica.

[17]  Franz-Josef Brandenburg,et al.  On Aligned Bar 1-Visibility Graphs , 2016, WALCOM.

[18]  Ronald Fagin,et al.  Comparing Partial Rankings , 2006, SIAM J. Discret. Math..

[19]  Michael Kaufmann,et al.  Bar 1-Visibility Graphs vs. other Nearly Planar Graphs , 2014, J. Graph Algorithms Appl..

[20]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Algorithmica.

[21]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[22]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[23]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[24]  Stefan Felsner,et al.  Parameters of Bar k-Visibility Graphs , 2008, J. Graph Algorithms Appl..

[25]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[26]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[27]  Mikkel Thorup Map graphs in polynomial time , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[28]  D. Král,et al.  Coloring plane graphs with independent crossings , 2010 .

[29]  Giuseppe Liotta,et al.  A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..

[30]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[31]  Md. Saidur Rahman,et al.  Bar 1-Visibility Drawings of 1-Planar Graphs , 2013, ICAA.

[32]  Franz-Josef Brandenburg 1-Visibility Representations of 1-Planar Graphs , 2014, J. Graph Algorithms Appl..

[33]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[34]  S. Mitchell Linear algorithms to recognize outerplanar and maximal outerplanar graphs , 1979 .

[35]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[36]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[37]  Stephen K. Wismath,et al.  Characterizing bar line-of-sight graphs , 1985, SCG '85.

[38]  M. Kaufmann Bar 1-Visibility Graphs vs. other Nearly Planar Graphs , 2014 .

[39]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..